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Abstract 

In this paper we look at the role that vertical fields can play 
in enhancing the perfonnance of a feedforward neural network. 
Vertical fields help us to detennine zones in the input space that 
are mapped onto the same output, they act in a similar way to 
kernels of linear mappings but in a nonlinear setting. In the 
paper we illustrate our ideas using data from a real applica­
tion, namely forecasting atmospheric pollution for the town of 
Saint-Etienne in France. 

1 Introduction 

We have been investigating the problem of forecasting 
atmospheric pollution for some time [1, 2, 3]. We have 
worked on data from two towns in France: Montpellier 
and Saint-Etienne. Although the local conditions are not 
the same for the two towns and pollution levels are dif­
ferent, the problems facing potential forecasters are the 
same for these and indeed most towns. 

In general we have a large database available, data 
are collected for many different variables about every 10 
minutes or so 24 hours a day throughout the year. We 
need to plunge into the databases in order to find rela­
tionships between variables. These relationships are usu­
ally expressed in the form of linear or nonlinear regres­
sion formulae, neural networks, fuzzy inference systems, 
or indeed many other types of mathematical tools. One 
then uses the relationship in order to forecast pollution 
levels. We are particularly interested in ozone levels. 

One thing which intrigues us is that there are instances 
where "similar" days produce the same levels of ozone 
and "dissimilar days" produce the same levels of ozone. 
Similar and dissimilar being defined by Euclidian dis­
tances between data vectors containing meteorological 
data, actual levels of pollution etc. 

For this reason, we looked toward vertical vector fields 
to see whether they could enlighten us. This article illus­
trates some of our preliminary trials. 

2 Vertical vector fields 
Given a mapping 7r : X -+ Y, where the topological 

spaces X and Y have dimensions nand m respectively 
with n > m, and where we assume that the mapping is 
at least C 1 • We denote the differential of this mapping 
by 7r* (the matrix offirst partial derivatives) then a vector 
field v : X -+ X is said to be a vertical vector field if 

(1) 

where the 0 on the right hand side of (1) represents a 
vector of zeros of dimension m. In this article we will 
be taking the input space to an open subset of IR" and we 
will assume that 7r* has full rank (i.e. m) on this subset. 
That being the case, there will be n - m independent 
vertical fields satisfying (I). 

The interesting thing about vertical vector fields is that 
if 7r(xo) = Yo then 

7r(cxp(tv)Xo) = Yo fort> 0 (2) 

where cxp( tv )xo denotes the operation of exponentiat­
ing the vector field, i.e. solving the differential equation 

:i; = v(x) with x(O) = Xo 

h .. - dx 
W ere x .- Tt. 

What is more, due to the fact that any trajectory de­
fined by the n - m vertical vector fields is mapped by 
7r onto the same value, we can make use of the follow­
ing construction. Let the mapping 4> : S -+ X, where 
S is an open neighbourhood of the origin in IRn - m , be 
defined as follows 

where the Si are the elements of a vector s E Sand Xo 
is such that 7r(xo) = Yo. The concatenation in (3) means 
that we start at the point Xo and go in the direction of 
the vector field VI for SI time units, then we go in the 
direction of vector field V2 for s2 time units etc. The 
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result is that 7r( <1>( s)) = Yo. As s goes through all of 
S then the trajectories form a hyper-surface in X and 
this hyper-surface is usually called the leaf above Yo and 
denoted Lyo' 

In our case, the mapping 7r is a standard feedforward 
neural network with analytic activation functions. We 
assume that the neural network has been trained on some 
subset of the available training data, taken to be a collec­
tion of data pairs (Xi, y;), i = 1, ... , N. In particular, 
we assume that the subset used for training is of very 
low cardinality when compared to all the data available 
and that the network has been trained as a sort of clas­
sifier. So, for example, if we initially train the network 
to identify two classes then 7r(x) = YI if x E Xeo and 
7r(x) = Y2 if X E XE where Xeo and XE are two disjoint 
subsets of X. 

Once the vertical vector fields have been determined 
for 7r(xo) = Yo we can determine whether or not any of 
the other data points Xi E L yO ' if such is the case then 
7r(x;) = Yo of course and so Xi need not be included in 
the training data. 

We believe that determining whether or not data points 
lie in LyO (for various Yo) will give us a better picture of 
the structure of the data. For example, we could retrain 
the neural network using data selected on the basis of 
whether or not they are related by vertical vector fields. 
If two points belonged theoretically to the same class but 
not to the same L yo ' then we could consider including 
them in the training data set but with them mapping to 
very slightly different output values. In this way, the two 
data points should belong to two leaves in vertical spaces 
very close together but not coincident. The separation or 
nearness of leaves could be used to increase robustness 
properties of the neural network. 

3 Estimating the vertical vector fields 
We need to find a set of vector fields satisfying (I). 

This is quite a task because these vector fields could be 
nonlinear, this is indeed the case with feed forward net­
works. Not only that, it would be extremely difficult to 
find a set of vector fields which satisfy the condition ev­
erywhere, i.e. Vx E X. We are therefore confined to 
making approximations and assumptions about the vec­
tor fields . 

• The first, and probably the strongest, assumption 
that we make is that the vertical vector fields are 
linear so that in (I) v(x) = Ax for some n x n 
matrix A. 

• The principal approximation that we use is to sat­
isfy (I) at a single point xo, by continuity this will 
mean that the condition is satisfied in a neighbour­
hood ofxo. 

• The second assumption that is made about the vec­
tor fields is that they form an involutive Lie alge­
bra at the point Xo and thus in a neighbourhood of 
Xo· 

To begin the calculation we select a point Xo and eval­
uate 7r * (xo) by using a second order central difference 
approximation for the partial derivatives. We then de­
termine a basis for the kernel of 7r*(xo) by using the 
singular value decomposition [4], that we denote by 
Ker(7r*(xO)={VI, ... vn - m }. Making use of the above 
listed approximation and to satisfy the first of the as­
sumptions we need to find matrices AI, ... An-m such 
that 

Akxo = Vk for k = 1, ... , n - m (4) 

Then, for the second of the above assumptions the fol­
lowing conditions have to be satisfied [5] 

n-m 

[Ai, Aj] (xo) = L C~jAkXo 
k=l 

(5) 

for i, j = 1, ... n - m and i t= j 

where [Ai, Aj] = AiAj - AjAi is the Lie bracket and 
the C~j are scalars. 

In fact, we employ a numerical optimisation method 
to calculate the elements of the matrices Ai and the 
scalars C~j in order to ensure that the following condi­
tion is satisfied. 

d7r(x(t))1/ 
dtl/ = 0 

Ix=xo 

for /I = 0, 1,2, ... 

The complete method is explained in [6]. 
Having calculated the vertical vector fields, we can 

then evaluate <1> as in (3) for a fixed s. 


