
Byte Code Engineering 

Markus Dahm 

Freie Universitat Berlin 
dahm@inf.fu-berlin.de 

Abstract. The term "Java" is used to denote two different concepts: the language 
itself and the related execution environment, the Java Virtual Machine (JVM), 
which executes byte code instructions. Several research projects deal with byte 
code-generating compilers or the implementation of new features via byte code 
transformations. Examples are code optimization, the implementation of param
eterized types for Java, or the adaptation of run-time behavior through load-time 
transformations. Many programmers are doing this by implementing their own 
specialized byte code manipulation tools, which are, however, restricted in the 
range of their reusability. Therefore, we have developed a general purpose frame
work for the static analysis and dynamic creation or transformation of byte code. 
In this paper we present its main features and possible application areas. 

1 Introduction 

Many research projects deal with extensions of the Java language [13] or improvements 
of its run-time behavior. Implementing new features in the Java execution environment 
(Java Virtual Machine, JVM) is relatively easy compared to other languages, because 
Java is an interpreted language with a small and easy-to-understand set of instructions 
(the byte code). 

The JAVACLASS API which we present in this paper is a framework for the static 
analysis and dynamic creation or transformation of Java class files.! It enables develop
ers to deal with byte code on a high level of abstraction without handling all the internal 
details of the Java class file format. There are many possible application areas ranging 
from class browsers, profilers, byte code-optimizers, and compilers, to sophisticated 
run-time analysis tools and extensions to the Java language [1,21,3]. Other possibilities 
include the static analysis of byte code [22], automated delegation [8], or implementing 
concepts of "Aspect-Oriented Programming" [16]. We think that the most interesting 
application area for JAVACLASS is meta-level programming, i.e. load-time reflection 
[18], which will be discussed in detail in section 3.1. 

Our approach provides a truly object-oriented view upon Java byte code. For exam
ple, code is modeled as a list of instructions objects. Within such a list one may add or 
delete instructions, change the control flow, or search for certain patterns of code using 
regular expressions. 

We assume the reader to have some basic knowledge about the NM and Java class 
files. A more detailed introduction to the API and the Virtual Machine can be found in 

1 The JAVACLASS distribution, including several code examples and javadoc manuals, is avail
able at http://www.inf.fu-berlin.de;-dahm/JavaClass/index. html. 

C. H. Cap (ed.), JIT’99
© Springer-Verlag Berlin Heidelberg 1999



268 

[9]. The paper is structured as follows: We first give a brief overview of related work 
and present some aspects and technical details of the framework in section 2. We then 
discuss concepts of byte code engineering and possible application areas in section 3 
and conclude with section 4. 

1.1 Related work 

The JOIE [7] toolkit can be used to augment class loaders with dynamic behavior. Sim
ilarly, "Binary Component Adaptation" [15] allows classes to be adapted and evolved 
on-the-fly. Han Lee's "Byte-code Instrumenting Tool" [17] allows the user to insert 
calls to analysis methods anywhere in the byte code. The Jasmin assembler [20] can be 
used to compile pseudo-assembler code. Kawa, a Java-based Scheme system, contains 
the gnu. bytecode package [5] to generate byte code. The metaXa Virtual Machine 
[12] allows to dynamically reify meta level events, e.g. instance field access. 

In contrast to these projects, JAVACLASS is intended to be a general purpose tool for 
"byte code engineering". It gives the developer full control on a high level of abstraction 
and is not restricted to any particular application area. 

2 The JavaClass framework 

The JAVACLASS framework consists of a "static" and a "generic" part. The former is 
not intended for byte code modifications. It may be used, e.g., to analyze Java classes 
without having the source files at hand. The latter supplies an abstraction level for creat
ing or transforming class files dynamically. It makes the static constraints of Java class 
files, like hard-coded byte code addresses, mutable. Using the term "generic" here may 
be a bit misleading, we should perhaps rather speak of a "generating" API. UML di
agrams - unfortunately too large for this paper - describing the class hierarchy of the 
framework can be found in [9]. 

2.1 Static API 

All of the binary components and data structures declared in the NM specification 
[19] are mapped to classes, where the top-level class is called JavaClass, giving the 
whole API its name. Instances of this class basically consist of a constant pool, fields, 
methods, symbolic references to the super class and to the implemented interfaces of 
the class. At run-time, these objects can be used as meta objects describing the contents 
of a class. This possibility will be discussed in detail in section 3.1. 

The constant pool serves as a central repository of the class and contains, e.g., en
tries describing the type signature of methods and fields. It also contains String, Inte
ger, and other constants. Indexes to the constant pool may be contained in byte code 
instructions as well as in other components of a class file and in constant pool entries 
themselves. 


