proSQLite: Prolog File Based Databases via an SQLite
Interface

Sander Canisius®, Nicos Angelopoulos'+2, and Lodewyk Wessels!+2

1 Bioinformatics and Statistics, Netherlands Cancer Institute, Amsterdam, Netherlands
2 The Netherlands Consortium for Systems Biology (NCSB)
{s.canisius,n.angelopoulos}@nki.nl

Abstract. We present a succinct yet powerful interface library to the SQLite
database system. The single file, server-less approach of SQLite along with the
natural integration of relational data within Prolog, render the library a useful ad-
dition to the existing database libraries in modern open-source engines. We detail
the architecture and predicates of the library and provide example deployment
scenarios. A simple bioinformatics example is presented throughout to illustrate
proSQLitet’s main functions. Finally, this paper discusses the strengths of the
system and highlights possible extensions.

Keywords: databases, SQL, Prolog libraries, SQLite.

1 Introduction

SQLite [1]] is a powerful, open source server-less database management system that re-
quires no configuration as its databases are stored in a single file. Ran from a lightweight
operating system (OS) library executable, it can be deployed in a number of scenarios
where a traditional server-client database management system (DBMS) is not possible,
advisable or necessary. This paper presents an implementation of a Prolog library that
uses the C-interface to communicate with the SQLite OS library.

The relational nature of Prolog makes its co-habitation with relational database sys-
tems an attractive proposition. Not only databases can be viewed and used as external
persistent storage devices that store large predicates that do not fit in memory, but it
is also the case that Prolog is a natural choice when it comes to selecting an inference
engine for database systems. The ODBC library in SWI-Prolog [18] is closely related
to our work since we have used the library as a blue print both for the C-interface code
and for the library’s predicates naming and argument conventions.

The field of integrating relational databases has a long tradition going back to the
early years of Prolog [8]. For instance the pioneering work of Draxler[7], although
based on writing out SQL rather than directly interrogating the database, provided ex-
tensive support for translating combinations of arbitrary Prolog and table-associated
predicates to optimised SQL queries. The code has been ported to a number of Pro-
log systems|[|13]]. Another approach which targeted machine learning and tabling as well
as importing tables as predicates is MYDDAS, [5]. An early ODBC interface for Quintus
Prolog was ProDBI [12]. Prolog has also been used to implement a database manage-
ment system based on the functional data model [[10]. In this contribution we concen-
trate on describing an open-source modern library that can be used out-of-the-box with

K. Sagonas (Ed.): PADL 2013, LNCS 7752, pp. 222-2271 2013.
© Springer-Verlag Berlin Heidelberg 2013

proSQLite: Prolog File Based Databases via an SQLite Interface 223

Table 1. Predicates for proSQLite library. Left: connection management and SQL queries. Right:
auxiliary predicates on formatted queries and database introspection.

predicate name/arity moded arguments predicate name/arity moded arguments

sqlite connect/2 +File, ?Conn

sqlite connect/3 +File, ?Conn, +Opts sqlite format query/3 +Conn, +SQL, -Row
sqlite disconnect/1 +Conn sqlite current table/2 +Conn, -Row

sqlite current connection/I -Conn sqlite table column/3 +Conn, 7Table, -Column
sqlite default connection/l -Conn sqlite table count/3 +Conn, +Table, -Count
sqlite query/2 +SQL, -Row

sqlite query/3 +Conn, +SQL, -Row

a zero configuration, community supported database system. We hope that the library
will be a useful tool for the logic programming community and provide a solid basis
in which researchers can contribute rather than having to reinvent the basic aspects of
such integrations.

2 Library Specifics

Here we present the overall architecture of the system along with the specific details
of the three component architecture. Our library was developed on SWI 6.1.4 under a
Linux operating system. It is also expected to be working on the Yap 6.3.2 [6]] by means
of the C-interface emulation [[16] that has been also used in the porting other low-level
libraries [2]]. We publis the library as open source and we encourage the porting to
other Prolog engines as well as contributions from the logic programming community
to its further development. Deployment is extremely simple and only depend on the
location of the SQLite binary.

Our library is composed of three main components. At the lower level, written in C,
the part that handles opening, closing and communicating with the SQLite OS library.
The C code is modelled after, and borrows crucial parts from the ODBC library of SWI.
On top of the low-level interface, sit two layers that ease the communication with the
database. On the one hand, a set of predicates allow the interrogation of the database
dictionary, while a third layer associates tables to Prolog predicates.

The heart of the library is its interface to SQLite. This is implemented in C and has
strong affinity to the ODBC layer in SWI. The left part of Table [I] lists the interface
predicates to the core system. Management predicates allow users to open, close and
interrogate existence of connections to databases. The C code creates a unique, opaque
term to keep track of open connections. However, this is not particularly informative to
the users/programmers. More conveniently, the library allows for aliases to connections
that can act as mnemonic handles. As a running example we will use the connection
to a large but simple protein database] from Uniprot. It has two tables referenced on a
single key and having 286, 525 and 3, 044, 651 entries. The single file SQLite database
is 184 Mb in size. Table 2l summarises the basic parameters of the database

'"http://bioinformatics.nki.nl/~nicos/sware
http://bicinformatics..nki.nl/ ~nicos/sware/prosglite/uniprot.sglite

http://bioinformatics.nki.nl/~nicos/sware
http://bioinformatics.
.nki.nl/~nicos/sware/prosqlite/uniprot.sqlite

