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Abstract. A motivation for studying the nonlinear Black- Scholes equa-
tion with a nonlinear volatility arises from option pricing models taking
into account e.g. nontrivial transaction costs, investors preferences, feed-
back and illiquid markets effects and risk from a volatile (unprotected)
portfolio. In this work we develop positivity preserving algorithm for
solving a large class of non-linear models in mathematical finance on the
original (infinite) domain. Numerical examples are discussed.

1 Introduction and Model Formulation

The solution of the (linear) Black-Scholes equation (Black and Scholes, 1973)
has been derived under several restrictive assumptions like e.g. frictionless, liquid
and complete markets, etc. We also recall that the linear Black-Scholes equation
provides a perfectly replicated hedging portfolio. In the last decades some of these
assumptions have been relaxed in order to model, for instance, the presence of
transaction costs (see e.g. Leland [19], Avellaneda and Parés [5]), feedback and
illiquid market effects due to large traders choosing given stock-trading strategies
(Frey and Patie [10]), imperfect replication and investors preferences (Barles and
Soner [6]), risk from unprotected portfolio (Jandacka-Sevcovi, [15]).

This models defer from the classical Black-Scholes equation by a non-constant
volatility term o, which depends on time ¢, spot price S of the underlying and
the second derivative (Greek I') of the option price V'(S,t). Hence, the model
equation is the following nonlinear partial differential equation

1
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with constant short rate 7, dividend yield g, maturity T' and volatility o (¢, S, Vss)
depending on the particular model.

We will study () for European Call option, i.e. the value V (S, t) is the solution
to(),g=00n0<5 < 00,0 <t <T with the following terminal and boundary
conditions (E > 0 is the exercise price):

V(S,T) =max{0,5S — E}, 0<5 < o0,
V(0,6)=0, 0<t<T, (2)
V(S,t)=S8—Ee T & 5 .
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The model () can be written as the backward parabolic fully nonlinear PDE
V, + S%F(S, Vs, Vss) = 0. At some conditions on F, the most used of which are
F(S,p,r) € C?, V(S,T) = Vp(9), F-(S,VA(S),V/(S)) > 0, in [12J6/I5] was
obtained results for existence and uniqueness of solutions (classical or viscosity).
It was checked that the model described above satisfies these conditions.

Let G(S, Vs, Vss) = S?F(S, Vs, Vss), G € C*((0,T) x R?). We briefly discuss
the maximum principle (MP) for (). Let ITr be the rectangle ITr = {(S,t) : 0 <
t<T, —o0<a<b< +oo} and G,(S,p,r) > 0 everywhere and G..(S,0,0) = 0.
Then, if V is a classical solution of V; + G(S,Vs,Vss) = 0 in Il we have:

max V = maxwu and minV = minV, where I'r = TUITIUIII, I = {0 <t <
IIr I'r Iy Ir

T,z=a},II={a<xz<b t=0}III ={0<t<T, z=>}is the parabolic
part of the boundary. For the proof, see [2].

There exists many discretizations, algorithms and some numerical methods for
different versions of the non-linear Black-Scholes equation [4U7I8I12/T4]. In [20],
authors develop positivity-preserving (i.e. the non-negativity of the numerical
solution to be guaranteed) first-order fully implicit scheme for models arising
from pricing European options under transaction costs. In our previous work
[17] we developed a fast, second order both in space and time a kernel-based
method for solving a large class of non-linear models in mathematical finance,
computed on large enough truncated region. But the non-negativity of the nu-
merical solution is not guaranteed. In this work, having in mind MP discussed
above, we will present efficient, positivity preserving algorithm for solving the
same non-linear Black-Scholes models on the original (infinite) interval. We de-
velop implicit-explicit methods on quasi-uniform mesh (QUM), implementing
the idea of van Leer flux limiter [ITI321].

An often used approach to overcome the degeneration at S = 0 and to obtain
a forward parabolic problem, is the variable transformation [TIS12]

Vv

x(S)—log(S), T(t)zlag(Tft), u(x,T):e_wE.

E 2
Now, denoting K = 2r/cZ (oo is the volatility of the underlying asset), the
equation () transforms into

2
o’ (1 ogT
Ur 2( YTy Uy Ug ) (U + Ugy) — Kup =0, 2€R, 0<7< 02 E)

2 =1+ f(us, uzz), fug, ugy) = Le - sign(ug + tugy),

Ghg = 1+ f(2, Ty, Ugr),  F(T, Ty Uy Ugr) = P[a? B (g 4 )],

035 =1+ f(@, Uz, Uaa), f(@, ug, tga) = plEe” (ug + Um)]l/sv

P = Fltas 1), e b

Fop = (2, U, Uaa), F@,up, ton) = [1 = p - ME") (ug + uze)] 72,
where 2 = 5%,BS7JS,AP,FP corresponds to Leland, Barles-Soner, Jandacka-

Sevéovie, Avellaneda-Parés and Frey-Patie models, respectively. Here 0 < Le <



