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Abstract. A motivation for studying the nonlinear Black- Scholes equa-
tion with a nonlinear volatility arises from option pricing models taking
into account e.g. nontrivial transaction costs, investors preferences, feed-
back and illiquid markets effects and risk from a volatile (unprotected)
portfolio. In this work we develop positivity preserving algorithm for
solving a large class of non-linear models in mathematical finance on the
original (infinite) domain. Numerical examples are discussed.

1 Introduction and Model Formulation

The solution of the (linear) Black-Scholes equation (Black and Scholes, 1973)
has been derived under several restrictive assumptions like e.g. frictionless, liquid
and complete markets, etc. We also recall that the linear Black-Scholes equation
provides a perfectly replicated hedging portfolio. In the last decades some of these
assumptions have been relaxed in order to model, for instance, the presence of
transaction costs (see e.g. Leland [19], Avellaneda and Parás [5]), feedback and
illiquid market effects due to large traders choosing given stock-trading strategies
(Frey and Patie [10]), imperfect replication and investors preferences (Barles and
Soner [6]), risk from unprotected portfolio (Jandačka-Ševčovič, [15]).

This models defer from the classical Black-Scholes equation by a non-constant
volatility term σ, which depends on time t, spot price S of the underlying and
the second derivative (Greek Γ ) of the option price V (S, t). Hence, the model
equation is the following nonlinear partial differential equation

Vt +
1

2
σ2(t, S, VSS)S

2VSS +(r− q)SVS − rV = 0, 0 ≤ S < ∞, 0 ≤ t ≤ T, (1)

with constant short rate r, dividend yield q, maturity T and volatility σ2(t, S, VSS)
depending on the particular model.

We will study (1) for European Call option, i.e. the value V (S, t) is the solution
to (1), q = 0 on 0 ≤ S < ∞, 0 ≤ t ≤ T with the following terminal and boundary
conditions (E > 0 is the exercise price):

V (S, T ) = max{0, S − E}, 0 ≤ S < ∞,

V (0, t) = 0, 0 ≤ t ≤ T, (2)

V (S, t) = S − Ee−r(T−t), S → ∞.
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The model (1) can be written as the backward parabolic fully nonlinear PDE
Vt + S2F (S, VS , VSS) = 0. At some conditions on F , the most used of which are
F (S, p, r) ∈ C2, V (S, T ) = VT (S), Fr(S, V

′
T (S), V

′′
T (S)) > 0, in [1,2,6,15] was

obtained results for existence and uniqueness of solutions (classical or viscosity).
It was checked that the model described above satisfies these conditions.

Let G(S, VS , VSS) = S2F (S, VS , VSS), G ∈ Ck((0, T )×R3). We briefly discuss
the maximum principle (MP) for (1). Let ΠT be the rectangleΠT = {(S, t) : 0 <
t < T, −∞ < a < b < +∞} and Gr(S, p, r) ≥ 0 everywhere and Gr(S, 0, 0) = 0.
Then, if V is a classical solution of Vt + G(S, VS , VSS) = 0 in ΠT we have:
max
ΠT

V = max
ΓT

u and min
ΠT

V = min
ΓT

V , where ΓT = I ∪ II ∪ III, I = {0 < t <

T, x = a}, II = {a < x < b, t = 0}, III = {0 < t < T, x = b} is the parabolic
part of the boundary. For the proof, see [2].

There exists many discretizations, algorithms and some numerical methods for
different versions of the non-linear Black-Scholes equation [4,7,8,12,14]. In [20],
authors develop positivity-preserving (i.e. the non-negativity of the numerical
solution to be guaranteed) first-order fully implicit scheme for models arising
from pricing European options under transaction costs. In our previous work
[17] we developed a fast, second order both in space and time a kernel-based
method for solving a large class of non-linear models in mathematical finance,
computed on large enough truncated region. But the non-negativity of the nu-
merical solution is not guaranteed. In this work, having in mind MP discussed
above, we will present efficient, positivity preserving algorithm for solving the
same non-linear Black-Scholes models on the original (infinite) interval. We de-
velop implicit-explicit methods on quasi-uniform mesh (QUM), implementing
the idea of van Leer flux limiter [11,13,21].

An often used approach to overcome the degeneration at S = 0 and to obtain
a forward parabolic problem, is the variable transformation [1,8,12]

x(S) = log

(
S

E

)
, τ(t) =

1

2
σ2
0(T − t), u(x, τ) = e−xV

E
.

Now, denoting K = 2r/σ2
0 (σ0 is the volatility of the underlying asset), the

equation (1) transforms into

uτ − σ̃2(τ, x, ux, uxx)(ux + uxx)−Kux = 0, x ∈ R, 0 ≤ τ ≤ σ2
0T

2
, (3)

σ̃2
L = 1 + f(ux, uxx), f(ux, uxx) = Le · sign(ux + uxx),

σ̃2
BS = 1 + f(x, τ, ux, uxx), f(x, τ, ux, uxx) = Ψ [a2EeKτ+x(ux + uxx)],

σ̃2
JS = 1 + f(x, ux, uxx), f(x, ux, uxx) = μ[Eex(ux + uxx)]

1/3,

σ̃2
AP = f(ux, uxx), f(ux, uxx) =

{
σ2
max, ux + uxx ≤ 0,

σ2
min, ux + uxx > 0,

σ̃2
FP = f(x, ux, uxx), f(x, ux, uxx) = [1− ρ · λ(Eex)(ux + uxx)]

−2,

where σ̃2 = σ̃2
L,BS,JS,AP,FP corresponds to Leland, Barles-Soner, Jandačka-

Ševčovič, Avellaneda-Parás and Frey-Patie models, respectively. Here 0 < Le <


