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Abstract. When program verification fails, it is often hard to understand what
went wrong in the absence of concrete executions that expose parts of the im-
plementation or specification responsible for the failure. Automatic generation of
such tests would require “executing” the complex specifications typically used
for verification (with unbounded quantification and other expressive constructs),
something beyond the capabilities of standard testing tools.

This paper presents a technique to automatically generate executions of pro-
grams annotated with complex specifications, and its implementation for the Boo-
gie intermediate verification language. Our approach combines symbolic execu-
tion and SMT constraint solving to generate small tests that are easy to read
and understand. The evaluation on several program verification examples demon-
strates that our test case generation technique can help understand failed verifica-
tion attempts in conditions where traditional testing is not applicable, thus making
formal verification techniques easier to use in practice.

1 Help Needed to Understand Verification

Static program verification has made tremendous progress, and is now being applied
to real programs [16,11] well beyond the scale of “toy” examples. These achievements
are impressive, but still require massive efforts and highly-trained experts. One of the
biggest remaining obstacles is understanding failed verification attempts [19]. Most
difficulties in this area stem from inherent limits of static verification, and hence could
benefit from complementary dynamic techniques.

Static program proving techniques—implemented in tools such as Boogie [17],
Dafny [18], and VeriFast [8]—are necessarily incomplete, since they target undecid-
able problems. Incompleteness implies that program verifiers are “best effort”: when
they fail, it is no conclusive evidence of error. It may as well be that the specification is
sound but insufficient to prove the implementation correct; for example, a loop invariant
may be too weak to establish the postcondition. Even leaving the issue of incomplete
specifications aside, the feedback provided by failed verification attempts is often of
little use to understand the ultimate source of failure. A typical error message states
that some executions might violate a certain assertion but, without concrete input val-
ues that trigger the violation, it is difficult to understand which parts of the programs
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should be adjusted. And even when verification is successful, it would still be useful
to have “sanity checks” in the form of concrete executions, to increase confidence that
the written specification is not only consistent but sufficiently detailed to capture the
intended program behavior.

Dynamic verification techniques are natural candidates to address these shortcom-
ings of static program proving, since they can provide concrete executions that conclu-
sively show errors and help narrow down probable causes. Traditional dynamic tech-
niques based on testing are, however, poor matches to the capabilities of static provers.
Testing typically targets simple properties, such as out-of-bound and null dereferencing
errors, or, only in a minority of cases, lightweight executable specifications (e.g., con-
tracts). Program provers, in contrast, work with very expressive specification and imple-
mentation languages supporting features such as nondeterminism, unbounded quantifi-
cation, infinitary structures (sets, sequences, etc.), and complex first- or even higher-
order axioms; none of these is executable in the traditional sense. As we argue in
Sec. 2, however, even relatively simple programs may require such complex specifi-
cations. Program provers also support modular verification, where sufficiently detailed
specifications of modules or routines are used in lieu of missing or incomplete imple-
mentations; this is another scenario where runtime techniques fall short because they
require complete implementations.

In this paper, we propose a technique to generate executions of programs annotated
with complex specifications using features commonly supported by program provers
(nondeterminism, unbounded quantification, partial implementations, etc.). The tech-
nique combines symbolic execution with SMT constraint solving to generate small
and readable test cases that expose errors (failing executions) or validate specifications
(passing executions).

The proposed approach supports executing both imperative and declarative program
elements, which accommodates the implementation semantics of loops and procedure
calls, defined by their bodies, as well as their specification semantics, used in modu-
lar verification, where the effect of a procedure call is defined solely the procedure’s
pre- and postcondition and the effect of a loop by its invariant. The implementation
semantics is useful to discriminate between inconsistent and incomplete specifications;
while the specification semantics makes it possible to generate executions in the pres-
ence of partial implementations, as well as to expose spurious executions permitted by
incomplete specifications.

Our technique simplifies the constraints passed to the SMT solver, only targeting
the values required for a particular symbolic execution. This avoids the solver getting
bogged down when reasoning about complex specifications—a problem often arising
with program provers—without need for additional guidance in the form of quantifier
instantiation heuristics. The simplification also improves the predictability of test case
generation. Combined with model minimization techniques, it produces short—often
minimal-length—executions that are quite easy to read. While constraint simplifica-
tion might also produce false positives (infeasible executions), the evaluation of Sec. 5
shows that this rarely happens in practice: the small risk amply pays off by producing
easy-to-understand executions, symptomatic of the rough patches in the implementation


