
Early Experiences with the OpenMP

Accelerator Model�

Chunhua Liao1, Yonghong Yan2, Bronis R. de Supinski1, Daniel J. Quinlan1,
and Barbara Chapman2

1 Center for Applied Scientific Computing, Lawrence Livermore National Laboratory
{liao6,dquinlan,desupinski1}@llnl.gov

2 Department of Computer Science, University of Houston
{yanyh,chapman}@cs.uh.edu

Abstract. A recent trend in mainstream computer nodes is the com-
bined use of general-purpose multicore processors and specialized accel-
erators such as GPUs and DSPs in order to achieve better performance
and to reduce power consumption. To support this trend, the OpenMP
Language Committee has approved a set of extensions to OpenMP (re-
ferred to as the OpenMP accelerator model). The initial version is the
subject of Technical Report 1 (TR1) while OpenMP 4.0 Release Candi-
date 2 (RC2) further refines the extensions.

In this paper, we examine the newly released accelerator directives
and create an initial reference implementation, referred to as HOMP
(Heterogeneous OpenMP). Focused on targeting NVIDIA GPUs, our
work is based on an existing OpenMP implementation in the ROSE
source-to-source compiler infrastructure. HOMP includes extensions to
parse the new constructs and to represent them in the AST and other
compiler translation details. Further we provide initial runtime support.
For our evaluation, we have adapted a few existing OpenMP codes to
use the accelerator model directives and present preliminary performance
results. Finally, we critique the accelerator model in terms of its impact
on developers and compiler writers and suggest possible improvements.

1 Introduction

Heterogeneous computer architectures that combine general-purpose multicore
CPUs with specialized accelerators have become a viable solution to build high
performance supercomputers, as demonstrated by Titan at ORNL (NVIDIA
GPGPUs) and Stampede at TACC (Intel Xeon Phi) in the recent top500 list.
Multicore CPUs are good at processing coarse-grained, irregular tasks; while
accelerators excel in certain workloads such as large-scale data parallel and finer-
grained vector processing. However, to exploit their computation capabilities

� LLNL-CONF-636479. This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. This work was also supported by the National Science Foun-
dations Computer Research Infrastructure program under Award No. CNS-1205708.

A.P. Rendell et al. (Eds.): IWOMP 2013, LNCS 8122, pp. 84–98, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Early Experiences with the OpenMP Accelerator Model 85

efficiently has required significant programmer effort to optimize an application
programwith respect to the specific hardware features of each type of accelerator.

Programming models such as OpenCL, CUDA and Brook provide mecha-
nisms for an application to exploit the hardware capabilities of accelerators.
High-level programming models, such as OpenACC [1], aim to provide an eas-
ier migration option from a sequential or parallel CPU version to the use of
accelerators, typically GPGPUs. However, using these programming models to
exploit their capabilities completely still poses significant challenges, even for
expert programmers. Using multiple programming models in one application, as
is likely with models that provide accelerator support that is distinct from CPU
models, increases code complexity and decreases its portability. Mixing multiple
programming models also complicates the compiler and runtime support due to
the language complexity and to support runtime interoperability.

OpenMP has proven to be a productive solution for parallel programming
with CPUs in shared memory systems. Recently, the OpenMP Language Com-
mittee has been working toward a single specification that supports heteroge-
neous computation nodes using both CPUs and accelerators. The committee has
developed a set of extensions that they released first as a dedicated Technical
Report 1 (TR1) and then as part of OpenMP 4.0 Release Candidate 2 (RC2) [2].
The extensions in this OpenMP accelerator model build on existing OpenMP
concepts and constructs to provide a unified model for GPUs and CPUs. This
model relies on compiler analysis and transformations to generate code that
can execute on accelerators for specified source code regions, as well as runtime
support to provide data movement and other support for hybrid execution.

In this paper, we review the OpenMP accelerator model and share our ex-
periences of creating an initial implementation, the Heterogeneous OpenMP
(HOMP) compiler. We have two goals: to provide early feedback on the us-
ability of the OpenMP accelerator model and its impact on compiler writers;
and to create a reference implementation for the extensions that the research
community can leverage to explore further extensions.

The rest of the paper is organized as follow. Section 2 reviews the major accel-
erator extensions to OpenMP. Section 3 describes our initial implementation of
those extensions. We present our preliminary results in Section 4 and critique the
current model in Section 5. Section 6 presents related work. Section 7 concludes
the paper and discusses our future work.

2 The OpenMP Accelerator Model

OpenMP 4.0 Release Candidate 2 [2] extends the execution model of the specifi-
cation to support accelerators with device constructs. The OpenMP accelerator
model assumes that a computation node has a host device connected with one
or multiple accelerators as target devices. It uses a host-centric model in which a
host device “offloads” code regions and data to accelerators for execution, spec-
ified using the target construct. This construct causes data and an executable to
be copied (offloaded) to the accelerator before computation.


