Translating VDM to Alloy

Kenneth Lausdahl

Department of Engineering, Aarhus University
Finlandsgade 24, DK-8200 Aarhus N, Denmark
lausdahl@cs.au.dk

Abstract. The Vienna Development Method is one of the longest established for-
mal methods. Initial software design is often best described using implicit speci-
fications but limited tool support exists to help with the difficult task of validating
that such specifications capture their intended meaning. Traditionally, theorem
provers are used to prove that specifications are correct but this process is highly
dependent on expert users. Alternatively, model finding has proved to be useful
for validation of specifications. The Alloy Analyzer is an automated model finder
for checking and visualising Alloy specifications. However, to take advantage of
the automated analysis of Alloy, the model-oriented VDM specifications must be
translated into a constraint-based Alloy specifications. We describe how a sub-
set of VDM can be translated into Alloy and how assertions can be expressed in
VDM and checked by the Alloy Analyzer.

1 Introduction

The Vienna Development Method (VDM) [142)3]] supports modelling and analysis at
various levels of abstraction, using a combination of implicit and explicit definitions
of functionality, and has a strong record of industrial application [4] for design and
specification of software systems. However, one of the limitations of the implicit VDM
specifications is the lack of tool support. Existing VDM tools, Overture [3] and VDM-
Tools [6], only provide limited help with the difficult task of validating that an implicit
VDM specification captures the intended meaning. The existing tools include standard
features like parsers and type checkers, but this only ensures that specifications are cor-
rect with regards to syntax and type constraints. The only tool support for semantic
validation is a proof obligation generator but this still leaves the difficult task of dis-
charging the proof obligations. Theorem provers such as [[7]] can be used to discharge
the generated proof obligations through an automates translation of VDM to HOL [89],
but using a theorem prover is usually complicated and requires an expert.

A different approach is to validate the specification through testing by running an in-
terpreter [[LO]. This is possible for explicit VDM specifications which can be interpreted
with actual values. The same approach can be used for implicit specifications through
the use of a tool that is able to automatically create explicit definitions of all functions
and operations based on their post-conditions, for a subset of the language, and then
validate the generated specification through the standard interpreter. This approach has
been taken for a subset of VDM that required post-conditions to follow a particular
template using conjunctions to separate constraints on the return value [[11412]. While

E.B. Johnsen and L. Petre (Eds.): IFM 2013, LNCS 7940, pp. 46-50] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Translating VDM to Alloy 47

this enables interpretation, it still requires user input, like test cases, whereas an alter-
native based on model checking requires less or no user input and still provides a larger
coverage than testing. Furthermore, such an approach enables easy detection of contra-
dictions in pre- and post-conditions when functions and operations are combined at a
system level.

The Alloy Analyzer is a bounded model finder that has proved to be useful for val-
idating specifications in the Alloy language [13]]. The analyzer can find instances of
Alloy specifications, as well as checking user defined assertions. The analyzer can pro-
vide immediate visual feedback when an instance is found or present a core containing
the top level formulas if no instance could be found.

In this paper, we present a translation of VDM to Alloy [13] thereby enabling VDM
specifications to be checked by the Alloy Analyzer. This enables users to get imme-
diate feedback both in the form of generated alloy instances, that can be visually dis-
played and from user-specified properties. We identify a subset of VDM that can be
automatically translated and checked in the Alloy Analyzer and give a preserving se-
mantics for the translation, thus identifying where a translation becomes infeasible.
Others have already shown that languages like Z, B, Event-B and UML can be trans-
lated [[14415016/17] to Alloy and benefit from the automated analysis the Alloy Analyzer
provides. The VDM language does not contain any direct way to capture system proper-
ties, also called validation conjectures [18| p. 191], which is equivalent to the assertions
used in model checking but we show a new way of using existing VDM expressions to
express such properties.

The structure of this paper is as follows. Section[2] describes the languages VDM and
Alloy and how they relate. Section[3] formally defines a subset of VDM and defines the
translation rules and the limitations of the translation. Section ] describes how VDM
specifications can be checked using this translation. Section [3 describes the findings
discovered by applying the translation to a number of VDM specifications. Finally,
Section[7] discusses the contribution of this paper.

2 VDM Models and Alloy Instances

The Vienna Development Method is one of the longest established model-oriented for-
mal methods, and was originally developed at the IBM laboratories in Vienna in the
1970’s. The VDM Specification Language is a higher-order language which is standard-
ised by the International Organization for Standardization (ISO), and has a formally
defined syntax, and both static and dynamic semantics [19,20]. The VDM language
employs a three valued logic; values may be true, false or bottom (undefined), using
Logic of Partial Functions (LPF) where the order of the operands is unimportant[21]}.
Models in VDM are based on data type definitions built from simple abstract types
using booleans, natural numbers, characters and type constructors for record, product,
union, map, (finite) set and sequences. Type membership may be restricted by predicate
invariants. Persistent state is defined by means of typed variables, again restricted by in-
variants. Operations that may modify the state can be defined implicitly, using standard

! The existing VDM interpreter is, however, depended on the operand order.



