
Matching Logic: An Alternative to Hoare/Floyd Logic�

Grigore Roşu1, Chucky Ellison1, and Wolfram Schulte2

1 University of Illinois at Urbana-Champaign
{grosu,celliso2}@illinois.edu

2 Microsoft Research, Redmond
schulte@microsoft.com

Abstract. This paper introduces matching logic, a novel framework for defin-
ing axiomatic semantics for programming languages, inspired from operational
semantics. Matching logic specifications are particular first-order formulae with
constrained algebraic structure, called patterns. Program configurations satisfy
patterns iff they match their algebraic structure and satisfy their constraints. Us-
ing a simple imperative language (IMP), it is shown that a restricted use of the
matching logic proof system is equivalent to IMP’s Hoare logic proof system, in
that any proof derived using either can be turned into a proof using the other. Ex-
tensions to IMP including a heap with dynamic memory allocation and pointer
arithmetic are given, requiring no extension of the underlying first-order logic;
moreover, heap patterns such as lists, trees, queues, graphs, etc., are given alge-
braically using fist-order constraints over patterns.

1 Introduction

Hoare logic, often identified with axiomatic semantics, was proposed more than forty
years ago [15] as a rigorous means to reason about program correctness. A Hoare logic
for a language is given as a formal system deriving Hoare triples of the form {ϕ} s {ϕ′},
where s is a statement and ϕ and ϕ′ are state properties expressed as logical formu-
lae, called precondition and postcondition, respectively. Most of the rules in a Hoare
logic proof system are language-specific. Programs and state properties in Hoare logic
are connected by means of program variables, in that properties ϕ, ϕ′ in Hoare triples
{ϕ} s {ϕ′} can and typically do refer to program variables that appear in s. Moreover,
Hoare logic assumes that the expression constructs of the programming language are
also included in the logical formalism used for specifying properties, typically first-
order logic (FOL). Hoare logic is deliberately abstract, in that it is not concerned with
“low-level” operational aspects, such as how the program state is represented or how
the program is executed.

In spite of serving as the foundation for many program verification tools and frame-
works, it is well-known that it is difficult to specify and prove properties about the heap
(i.e., dynamically allocated, shared mutable objects) in Hoare logic. In particular, local
reasoning is difficult because of the difficulty of frame inference [23, 25, 29]. Also, it

� Supported in part by NSF grants CCF-0916893, CNS-0720512, and CCF-0448501, by NASA
contract NNL08AA23C, by a Samsung SAIT grant, and by several Microsoft gifts.

M. Johnson and D. Pavlovic (Eds.): AMAST 2010, LNCS 6486, pp. 142–162, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Matching Logic: An Alternative to Hoare/Floyd Logic 143

is difficult to specify recursive predicates, because they raise both theoretical (consis-
tency) and practical (hard to automatically reason with) concerns. Solutions are either
ad hoc [18], or involve changing logics [21]. Finally, program verifiers based on Hoare
logic often yield proofs which are hard to debug and understand, because these typ-
ically make heavy use of encoding (of the various program state components into a
flat FOL formula) and follow a backwards verification approach (based on weakest
precondition).

Separation logic takes the heap as its central concern and attempts to address the
limitations above by extending Hoare logic with special logical connectives, such as the
separating conjunct “∗” [23,25], allowing one to specify properties that hold in disjoint
portions of the heap. The axiomatic semantics of heap constructs can be given in a for-
wards manner using separation connectives. While program verification based on sepa-
ration logic is an elegant approach, it is unfortunate that one would need to extend the
underlying logic, and in particular theorem provers, to address new language features.

In an effort to overcome the limitations above and to narrow the gap between oper-
ational semantics (easy) and program verification (hard), we introduce matching logic,
which is designed to be agnostic with respect to the underlying language configuration,
as long as it can be expressed in a standard algebraic way. Matching logic is similar to
Hoare logic in many aspects. Like Hoare logic, matching logic specifies program states
as logical formulae and gives axiomatic semantics to programming languages in terms
of pre- and post-conditions. Like Hoare logic, matching logic can generically be ex-
tended to a formal, syntax-oriented compositional proof system. However, unlike Hoare
logic, matching logic specifications are not flattened to arbitrary FOL formulas. Instead,
they are kept as symbolic configurations, or patterns, i.e., restricted FOL= (FOL with
equality) formulae possibly containing free and bound (existentially quantified) vari-
ables. This allows the logic to stay the same for different languages—new symbols can
simply be added to the signature, together with new axioms defining their behavior.

Matching Logic Patterns. Patterns (Sec. 3) can be defined on top of any algebraic
specification of configurations. In this paper, the simple language IMP (Sec. 2) uses
two-item configurations 〈〈. . .〉k 〈. . .〉env〉, where 〈. . .〉k holds a fragment of program and
〈. . .〉env holds an environment (map from program variables to values). The order of
items in the configuration does not matter, i.e., the top 〈. . .〉 cell holds a set. We use the
typewriter font for code and italic for logical variables. A possible configuration γ is:

〈〈x := 1; y := 2〉k 〈x �→ 3, y �→ 3, z �→ 5〉env〉

One pattern p that is matched by the above configuration γ is the FOL= formula:

∃a, ρ.((� = 〈〈x := 1; y := 2〉k 〈x �→ a, y �→ a, ρ〉env〉) ∧ a ≥ 0)

where “�” is a placeholder for configurations (regarded as a special variable). To see
that γ matches p, we replace � with γ and prove the resulting FOL= formula (bind ρ to
“z �→ 5” and a to 3). For uniformity, we prefer to use the notation (described in Sec. 3)

〈〈x := 1; y := 2〉k 〈x �→?a, y �→?a, ?ρ〉env 〈?a ≥ 0〉form〉


