
Modelling Changes and Data Transfers

for Architecture-Based Runtime Evolution
of Distributed Applications

An Phung-Khac, Jean-Marie Gilliot,
Maria-Teresa Segarra, Antoine Beugnard, and Eveline Kaboré

Department of Computer Science, Télécom Bretagne
Technopôle Brest-Iroise - CS 83818 - 29238 Brest Cedex 3 - France

{an.phungkhac,jm.gilliot,mt.segarra,antoine.beugnard,eveline.kabore}
@telecom-bretagne.eu

Abstract. Architecture-based approaches for runtime evolution enable
software systems to dynamically move between consistent architectural
variants. Successful runtime evolution must enable the new, replacement
variant to be initialized with the data of the replaced one. In distributed
systems, however, the initialization is complex and may be time-consuming
due to data transfers across sites. Identifying systems’ components subject
to change is then critical for planning evolution and reducing replacement
actions, avoid unnecessary data transfers, and then, reduce downtime of
system services. Addressing this issue, this paper presents an approach to
runtime evolution of distributed applications. We present how a develop-
ment process allows to 1) specify architectural variants of an application
and 2) identify components subject to change and operations for transfer-
ring data managed by these components. Moreover, the design informa-
tion is used at runtime to automatically plan evolution.

1 Introduction

An important class of software systems needs to evolve at runtime in order to
adapt to changing executing environments. Moreover, during evolution, they
are expected to be continuously available which require the software system to
modify its own architecture at runtime [1]. Such runtime modifications include
1) replacement, addition, and removal actions to achieve the target variant, and
2) initialization of the replaced variant with data of the replacement one.

As the above tasks may disrupt collaboration among components, coordina-
tion is needed when performing modification actions. Such coordination is even
more difficult when considering distributed software. Furthermore, initializing
the replacement variant with data of the replaced one may be time-consuming
due to data transfers across sites. Such data transfers make continuous avail-
ability difficult or even impossible to achieve. Therefore, planning evolution,
including identifying components subject to change and operations for trans-
ferring data managed by these components, becomes a critical task in order to

M. Ali Babar and I. Gorton (Eds.): ECSA 2010, LNCS 6285, pp. 392–400, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Architecture-Based Runtime Evolution of Distributed Applications 393

avoid unnecessary replacement of components and data transfers, thus reducing
downtime of system services.

In our previous work [2], we have proposed an architecture-based approach,
called adapt-medium approach, for runtime adaptation and evolution of dis-
tributed applications. The approach is based on a model-based development
process that allows to generate consistent architectural variants of a distributed
application, and then, embed the variants into an adaptive distributed compo-
nent. However, although an adapt-medium component is able to evolve at run-
time without recompilation, the whole running variant must be replaced when
performing evolution.

This paper extends our previous work by allowing identification, through the
model-based development process, of the variants’ components subject to change
and operations for manipulating their data. Therefore, when performing evolu-
tion, instead of replacing the whole running variant, only the necessary com-
ponents are replaced. Moreover, we describe how the system can exploit design
information of the model-based process in order to automatically plan evolution.

The remainder of the paper is organized as follows. Section 2 briefly presents
the adapt-medium approach that was presented in [2]. Section 3 describes the
basics when applying this approach to develop an adaptive publish/subscribe
system. Section 4 presents the main contribution of this paper, i.e., how our
approach allows identifying components subject to change and operations for
manipulating their data. Section 5 discusses related work and Section 6 concludes
the paper.

2 Adapt-Medium Approach Overview

To cope with distribution complexity and manage evolution we adopt the adapt-
medium approach when developing a distributed software system. This approach
is mainly defined by (see Figure 1) :

– A high-level abstraction of the system with a set of fixed services. As
defined by [3], these services define the functional properties of the system
and is represented by the dotted-line oval on top of Figure 1, called medium.

– A distributed architecture for implementing the system. As the system
should allow distributed collaborations among services, its internals are im-
plemented as a set of distributed components, called managers. Managers
collaborate to provide the specified services.

– A development method proposed in [4] which consists in a set of refine-
ments successively applied. Each refinement considers a particular design
concern and each concern has several alternative solutions. The refinement
process can be described and automated by using reusable model transfor-
mations.

In [2], we reused the refinement process in order to build architectural variants
of a software system. The process was extended to allow evolution and com-
pleted with a composition step enabling to embed all variants of a manager into


