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Abstract. We show how to combine the two most powerful approaches
for automated termination analysis of logic programs (LPs): the direct
approach which operates directly on LPs and the transformational ap-
proach which transforms LPs to term rewrite systems (TRSs) and tries
to prove termination of the resulting TRSs. To this end, we adapt the
well-known dependency pair framework from TRSs to LPs. With the
resulting method, one can combine arbitrary termination techniques for
LPs in a completely modular way and one can use both direct and trans-
formational techniques for different parts of the same LP.

1 Introduction

When comparing the direct and the transformational approach for termination of
LPs, there are the following advantages and disadvantages. The direct approach
is more efficient (since it avoids the transformation to TRSs) and in addition
to the TRS techniques that have been adapted to LPs [13,15], it can also use
numerous other techniques that are specific to LPs. The transformational ap-
proach has the advantage that it can use all existing termination techniques for
TRSs, not just the ones that have already been adapted to LPs.

Two of the leading tools for termination of LPs are Polytool [14] (implementing
the direct approach and including the adapted TRS techniques from [13,15]) and
AProVE [7] (implementing the transformational approach of [17]). In the annual
International Termination Competition,1 AProVE was the most powerful tool
for termination analysis of LPs (it solved 246 out of 349 examples), but Polytool
obtained a close second place (solving 238 examples). Nevertheless, there are
several examples where one tool succeeds, whereas the other does not.

This shows that both the direct and the transformational approach have their
benefits. Thus, one should combine these approaches in a modular way. In other
words, for one and the same LP, it should be possible to prove termination of
some parts with the direct approach and of other parts with the transformational
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approach. The resulting method would improve over both approaches and can
also prove termination of LPs that cannot be handled by one approach alone.

In this paper, we solve that problem. We build upon [15], where the well-
known dependency pair (DP) method from term rewriting [2] was adapted in
order to apply it to LPs directly. However, [15] only adapted the most basic
parts of the method and moreover, it only adapted the classical variant of the
DP method instead of the more powerful recent DP framework [6,8,9] which can
combine different TRS termination techniques in a completely flexible way.

After providing the necessary preliminaries on LPs in Sect. 2, in Sect. 3 we
adapt the DP framework to the LP setting which results in the new dependency
triple (DT) framework. Compared to [15], the advantage is that now arbitrary
termination techniques based on DTs can be applied in any combination and
any order. In Sect. 4, we present three termination techniques within the DT
framework. In particular, we also develop a new technique which can transform
parts of the original LP termination problem into TRS termination problems.
Then one can apply TRS techniques and tools to solve these subproblems.

We implemented our contributions in the tool Polytool and coupled it with
AProVE which is called on those subproblems which were converted to TRSs. Our
experimental evaluation in Sect. 5 shows that this combination clearly improves
over both Polytool or AProVE alone, both concerning efficiency and power.

2 Preliminaries on Logic Programming

We briefly recapitulate needed notations. More details on logic programming can
be found in [1], for example. A signature is a pair (Σ, Δ) where Σ and Δ are finite
sets of function and predicate symbols and T (Σ,V) resp. A(Σ, Δ,V) denote the
sets of all terms resp. atoms over the signature (Σ, Δ) and the variables V . We
always assume that Σ contains at least one constant of arity 0. A clause c is
a formula H ← B1, . . . , Bk with k ≥ 0 and H, Bi ∈ A(Σ, Δ,V). A finite set of
clauses P is a (definite) logic program. A clause with empty body is a fact and
a clause with empty head is a query. We usually omit “←” in queries and just
write “B1, . . . , Bk”. The empty query is denoted �.

For a substitution δ : V → T (Σ,V), we often write tδ instead of δ(t), where t
can be any expression (e.g., a term, atom, clause, etc.). If δ is a variable renaming
(i.e., a one-to-one correspondence on V), then tδ is a variant of t. We write δσ to
denote that the application of δ is followed by the application of σ. A substitution
δ is a unifier of two expressions s and t iff sδ = tδ. To simplify the presentation,
in this paper we restrict ourselves to ordinary unification with occur check. We
call δ the most general unifier (mgu) of s and t iff δ is a unifier of s and t and
for all unifiers σ of s and t, there is a substitution μ such that σ = δμ.

Let Q be a query A1, . . . , Am, let c be a clause H ← B1, . . . , Bk. Then Q′

is a resolvent of Q and c using δ (denoted Q �c,δ Q′) if δ = mgu(A1, H), and
Q′ = (B1, . . . , Bk, A2, . . . , Am)δ. A derivation of a program P and a query Q is
a possibly infinite sequence Q0, Q1, . . . of queries with Q0 = Q where for all i, we
have Qi �ci,δi Qi+1 for some substitution δi and some renamed-apart variant ci of


