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Abstract. We study the nonequilibrium phenomena of a coupled ac-
tive rotator model in complex networks. From a numerical Langevin
simulation, we find the peculiar phase transition not only on globally
connected network but also on other complex networks and reveal the
corresponding phase diagram. In this model, two phases — stationary
and quasi-periodic moving phases — are observed, in which microscopic
dynamics are thoroughly investigated. We extend our study to the non-
identical oscillators and the more heterogeneous degree distribution of
complex networks.
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1 Introduction

Various coupled oscillatory systems in nature have been known to exhibit many
interesting behaviors including synchronization. Collective synchronization has
attracted much interest due to the beauty of simultaneousness and the sponta-
neous emergence in such phenomena as the synchronous flashing of fireflies, the
chorusing of crickets, and the clapping of hands after an astonishing orchestral
performance [1]. In order to understand such synchronized behaviors, nonlinear
coupled oscillators have been studied extensively with various models. Among
them, the Kuramoto model is one of the most studied models due to its simplicity
and analytical tractability [2,3]. The Kuramoto model has been extended with
many variations for applications in diverse systems [3]. One natural extension is
to add external fields, which implies the external current applied to a neuron to
describe an excitable systems. This is also known to be an active rotator model
when each oscillator has the constant natural frequency [3,4].

Most studies of the active rotator model have assumed that all oscillators are
connected to each other, i.e., globally connected network, or sometimes 2 and 3-
dimensional regular lattice is used [4,5,6]. However, such a type of interaction has
a limitation when applied to most real systems. Therefore we need to consider
such nontrivial connectivity and extend the study of synchronization to complex
networks. Thus, in the present paper, we report our study of active rotator model
in complex networks.
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2 Model System

The dynamics of N coupled limit-cycle oscillators having the phase {φi(t)|i =
1, 2, . . . , N} is described by the set of equations

dφi

dt
= ωi − b sinφi − K

〈k〉
N∑

j=1

aij sin(φi − φj) + ηi(t). (1)

The first term ωi represents the natural frequency of the ith oscillator, which is
assumed the random normal distribution having the correlation 〈ωiωj〉 = σ2δij

with the variance σ2 and the mean 〈ωi〉 = ω0. The second and third terms
indicate the pinning force and the coupling between the oscillators respectively;
the coupling strength K is set to be a positive one (K > 0), so the interacting
oscillators favor their phase difference minimized. The adjacency matrix element
aij = 1(0) if oscillators i and j are connected (disconnected), and 〈k〉 denotes
the mean degree given by

∑
i ki/N , where the degree ki =

∑
j aij . In the last

term of Eq. (1), ηi(t) is the Gaussian white noise with properties 〈ηi(t)〉 =
0, 〈ηi(t)ηj(t′)〉 = 2Dδ(t − t′)δij .

When all oscillators are connected to each other, i.e., aij = 1 for all i �= j,
and b = 0, D = 0, the model corresponds to the original Kuramoto model [2].
If all oscillators are identical and b = 0, it describes the thermodynamic system
of classical XY spins, where D plays role of the temperature of the spin sys-
tems [6]. When all oscillators have the same frequency, we call the system as
active rotators.

Collective phase synchronization is conveniently described by the order pa-
rameter defined by

r(t)eiθ(t) ≡ 1
N

N∑

j=1

eiφj(t), (2)

where r > 0 implies emergence of the phase synchronization. Then we take the
time average of r(t) such as r ≡ r(t) = (2/T )

∑T
t=T/2+1 r(t), where the over

line represents the time averaging and we set T to enough large number after
confirming the state passes over the transient period. In the case of the original
Kuramoto model, the time averaged r delivers most information since r(t) sat-
urates to a value r. However, active rotators do not always go to the stationary
phase but show periodic behavior. Therefore, Shinomoto et al. [4] introduced
another order parameter σ and a kind of fluctuation measure χ̃ defined by

σeiϕ ≡ r(t)eiθ(t) =
2
T

T∑

t=T/2+1

r(t)eiθ(t), (3)

χ̃ ≡ N · |r(t)eiθ(t) − σeiϕ|2. (4)

One can easily show that χ̃ is equivalent to N · [r2(t)− σ2], which measures the
difference between r and σ.


