
Fast Bounds Checking Using Debug Register

Tzi-cker Chiueh

Computer Science Department
Stony Brook University
chiueh@cs.sunysb.edu

Abstract. The ability to check memory references against their asso-
ciated array/buffer bounds helps programmers to detect programming
errors involving address overruns early on and thus avoid many diffi-
cult bugs down the line. This paper proposes a novel approach called
Boud to the array bounds checking problem that exploits the debug
register hardware in modern CPUs. Boud allocates a debug register to
monitor accesses to an array or buffer within a loop so that accesses
stepping outside the array’s or buffer’s bound will trigger a breakpoint
exeption. Because the number of debug registers is typically small, in
cases when hardware bounds checking is not possible, Boud falls back to
software bounds checking. Although Boud can effectively eliminate per-
array-reference software checking overhead in most cases, it still incurs a
fixed set-up overhead for each use of an array within a loop. This paper
presents the detailed design and implementation of the Boud compiler,
and a comprehensive evaluation of various performance tradeoffs associ-
ated with the proposed array bounds checking technique. For the set of
real-world network applications we tested, including Apache, Sendmail,
Bind, etc., the latency penalty of Boud’s bounds checking mechanism
is between 2.2% to 8.8%, respectively, when compared with the vanilla
GCC compiler, which does not perform any bounds checking.

1 Introduction

Checking memory references against the bounds of the data structures they be-
long to at run time provides a valuable tool for early detection of programming
errors that could have otherwise resulted in subtle bugs or total application
failures. In some cases, these software errors might lead to security holes that
attackers exploit to break into computer systems and cause substantial finan-
cial losses. For example, the buffer overflow attack, which accounts for more
than 50% of the vulnerabilities reported in the CERT advisory over the last
decade [4, 20, 15], exploits the lack of array bounds checking in the compiler
and in the applications themselves, and subverts the victim programs to trans-
fer control to a dynamically injected code segment. Although various solutions
have been proposed to subjugate the buffer overflow attack, inoculating applica-
tion programs with strict array bounds checking is considered the best defense
against this attack. Despite these benefits, in practice most applications develop-
ers still choose to shy away from array bounds checking because its performance

P. Stenström et al. (Eds.): HiPEAC 2008, LNCS 4917, pp. 99–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



100 T.-C. Chiueh

overhead is considered too high to be acceptable [14]. This paper describes a
novel approach to the array bounds checking problem that can reduce the array
bounds checking overhead to a fraction of the input program’s original execution
time, and thus make it practical to apply array bounds checking to real-world
programs.

The general problem of bounds checking requires comparing the target address
of each memory reference against the bound of its associated data structure, which
could be a statically allocated array, or a dynamically allocated array or heap re-
gion. Accordingly, bounds checking involves two subproblems: (1) identifying a
given memory reference’s associated data structure and thus its bound, and (2)
comparing the reference’s address with the bound and raising an exception if the
bound is violated. The first subproblem is complicated by the existence of pointer
variables. As pointers are used in generating target memory addresses, it is nec-
essary to carry with pointers the ID of the objects they point to, so that the asso-
ciated bounds could be used to perform bounds checking. There are two general
approaches to this subproblem. The first approach, used in BCC [5], tags each
pointer with additional fields to store information about its associated object or
data structure. These fields could be a physical extension of a pointer, or a shadow
variable. The second approach [13] maintains an index structure that keeps track
of the mapping between high-level objects and their address ranges, and dynam-
ically searches this index structure with a memory reference’s target address to
identify the reference’s associated object. The first approach performs much faster
than the second, but at the expense of compatibility of legacy binary code that
does not support bounds checking. The second subproblem accounts for most of
the bounds checking overhead, and indeed most of the research efforts in the lit-
erature were focused on how to cut down the performance cost of address-bound
comparison, through techniques such as redundancy elimination or parallel ex-
ecution. At the highest compiler optimization level, the minimum number of in-
structions required in BCC [5], a GCC-derived array bounds checking compiler, to
check a reference in a C-like program against its lower and upper bounds is 6, two
to load the bounds, two comparisons, and two conditional branches. For programs
that involve many array/buffer references, software-based bounds checking still
incurs a substantial performance penalty despite many proposed optimizations.
In this paper, we propose a new approach, called Boud1, which exploits the de-
bug register hardware support available in mainstream CPUs to perform array
bounds checking for free. The basic idea is to use debug registers to watch the
end of each array being accessed, and raise an alarm when its bound is exceeded.
Because debug registers perform address monitoring transparently in hardware,
Boud’s approach to checking array bounds violation incurs no per-array-reference
overhead. In some cases, hardware bounds checking is not possible, for exam-
ple, when all debug registers are used up, and Boud falls back to traditional
software bounds checking. Therefore, the overhead of Boud mainly comes from
debug register set-up required for hardware bounds checking, and occasional
software-based bounds checking.

1 BOunds checking Using Debug register.


