
A. Moreira and J. Grundy (Eds.): Early Aspects 2007 Workshop, LNCS 4765, pp. 55 – 74, 2007.
© Springer-Verlag Berlin Heidelberg 2007

DERAF: A High-Level Aspects Framework for
Distributed Embedded Real-Time Systems Design

Edison Pignaton de Freitas1, Marco Aurélio Wehrmeister1, Elias Teodoro Silva Jr.1,
Fabiano Costa Carvalho1, Carlos Eduardo Pereira1,2, and Flávio Rech Wagner1

1 Computer Science Institute – Federal University of Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

2 Electrical Engineering Department, Federal University of Rio Grande do Sul, Brazil
{epfreitas, mawehrmeister, etsilvajr, fccarvalho,

flavio}@inf.ufrgs.br, cpereira@ece.ufrgs.br

Abstract. Distributed Embedded Real-time Systems (DERTS) have several
requirements directly related to characteristics that are difficult to handle when
a pure object-oriented method is used for their development. These
requirements are called Non-Functional Requirements (NFR) and refer to
orthogonal properties, conditions, and restrictions that are spread out over the
system. Pure object-oriented methods do not address successfully those
concerns, so new technologies, like aspect orientation, are being applied in
order to fulfill this gap. This work presents a proposal to use aspect orientation
in the analysis and design of DERTS. To support our proposal, we created
DERAF (Distributed Embedded Real-time Aspects Framework), an extensible
high-level framework (i.e. implementation-independent) to handle NFR of
DERTS. DERAF is used together with RT-UML in the design phase, aiming to
separate the handling of non-functional from functional requirements in the
Model Driven Design of DERTS. A qualitative assessment of DERAF
separation of concerns is also presented.

Keywords: Requirements Specification, Distributed Real-time Embedded
Systems, Aspect-Orientation applied to DERTS, Separation of DERT Concerns.

1 Introduction

The increasing complexity of Distributed Embedded Real-Time Systems (DERTS)
requires new development techniques in order to support system evolution and
maintainability, and the reuse of previously developed artifacts. An important concern
involved in DERTS design is how to deal with Non-Functional Requirements (NFR),
which have crosscutting concerns, that means, some NFRs may affect very distinct
parts of the system under development. If not properly handled, NFRs are responsible
for tangled code and loss of cohesion. In the literature, it is possible to find several
references addressing this separation of concerns where the crosscutting concerns are
identified as NFRs, as in [1], [4] and [6]. In order to promote a separation of concerns,
guidelines to handle NFRs separately from the functional ones have been proposed,
using concepts such as subject-oriented programming [2] and aspect-oriented

56 E.P. de Freitas et al.

programming [3]. Both approaches address the problem at the implementation level.
Some other approaches propose to take NFR into account as soon as possible that
means, in the early phases of the specification and design, as in the Early-Aspects [4]
approach.

Real-time systems have a very important NFR which is the concern about timing
aspects, such as deadlines, maximum jitter, worst case execution time, tolerated
delays, and other. The complexity related to the non-functional analysis of these
systems increases when they become distributed and embedded. To deal with some of
these NFR, some proposals suggest the use of aspects, as in [5] and [6] Aspects can
help to deal with crosscutting NFRs into DERTS design, modularizing their handling.
Besides the modularization capability, more abstract aspects are easier to reuse
because they define the handling of a concern at high-level and also how it can be
applied (or how it affects) the system without implementation or platform constraints.

This work presents the Distributed Embedded Real-time Aspects Framework
(DERAF), which provides an extensible set of aspects to deal with NFRs of DERTS
at a high-level of abstraction. On other words, DERAF is a set of implementation-
independent aspects to handle NFRs during the creation of DERTS RT-UML [10][11]
models at design phase. In this initial version, DERAF handles the following NFRs
(see Section 2): timing, precision, performance, distribution, and embedded behavior.
DERAF was created to be an extensible framework, such that it can be extended to
include support to other important aspects (e.g. fault-tolerance). However, these new
aspects must follow the high-level nature of the framework and also the
implementation-independence. It is important to highlight that, in spite of the high-
level of abstraction, aspects within DERAF must be implementable. On other words,
the realization of each aspect must be possible, avoiding unfeasible aspects.

The remaining of this paper is organized as follows. Section 2 outlines a brief
discussion on NFRs within DERTS domain. The following section presents an
aspects framework to handle the identified NFRs. Section 4 presents the transition
from requirements to design of DERTS using the DERAF. A case study and a
qualitative assessment of final design are presented in Section 5. Finally, the related
work is presented in section 6, and final remarks and future work in Section 7.

2 DERTS Non-functional Requirements

In order to deal with NFRs in early design phases of DERTS, it is firstly necessary to
define and understand the main concepts involved in the system context. The need of
this information motivates the classification of these concepts in terms of non-
functional concerns, which can affect the behavior and structure of the DERTS being
designed. Fig. 1 presents some key requirements related to DERTS development,
which are mainly based on the study presented in [14], on the IEEE glossary [15] and
on the SEI glossary [16].

The real-time concern is captured by the requirements stated in the Time
classification, which is divided in Timing and Precision requirements. The first one is
concerned with the specification of temporal limits for system activities execution,
such as established deadlines and periodic activations. Requirements classified as

