
Timed Calculus of Cryptographic Communication

Johannes Borgström1, Olga Grinchtein2, and Simon Kramer3

1 EECS, Technical University of Berlin
jobo@cs.tu-berlin.de

2 IT, Uppsala University
olgag@it.uu.se

3 Ecole Polytechnique Fédérale de Lausanne (EPFL)
simon.kramer@a3.epfl.ch

Abstract. We extend the (core) Calculus of Cryptographic Communication (C3)
with real time, e.g., time stamps and timed keys. We illustrate how to use this
extended calculus (tC3) on a specification and verification case study, namely the
failure of the Wide-Mouthed-Frog protocol in its original, i.e., timed, version.

Keywords: Applied process calculi, timed cryptographic protocols, formal mod-
elling, model-based specification and verification.

1 Introduction

Timed — as opposed to untimed — cryptographic protocols have received compar-
atively little attention from the formal methods community so far. The only timed
formalisms for the modelling, specification, and verification of such protocols we are
aware of are Timed CSP [1], tock-CSP [2], tCryptoSPA [3], the timed Spi-Calculus [4],
and the (unnamed) process model from [5] (which we will refer to as tBEL). (Although
Timed CSP and tock-CSP are special-purpose w.r.t. the temporal aspect, they — like
core CSP — are actually not special-purpose w.r.t. the cryptographic aspect.) For prac-
tical usability, special-purpose models of timed cryptographic protocols are preferable
over their general-purpose counterparts because (untimed) general-purpose models tend
to create considerable (en)coding overhead: “[. . .] the coding up required would make
the complex behaviour difficult to understand, and it is preferable to use a language
designed to express such real-time behaviour.” [2].

In tock-CSP, tCryptoSPA, and timed Spi-Calculus time is natural-number valued.
tock-CSP and tCryptoSPA provide local processes that globally synchronise through
so-called tock events resp. tick actions, which represent the passage of one unit of time.
And the timed Spi-Calculus provides a process constructor for querying a global clock.
Thus, tock-CSP, tCryptoSPA, and the timed Spi-Calculus lack local clocks that po-
tentially advance at different rates across different processes/locations. However [6],
“[c]locks can become unsynchronized due to sabotage on or faults in the clocks or the
synchronization mechanism, such as overflows and the dependence on potentially unre-
liable clocks on remote sites [. . .]”. Moreover [6], “[e]rroneous behaviors are generally
expected during clock failures [. . .] ” Hence, a faithful model of timed cryptographic
protocols must allow for potentially desynchronised, local clocks.

T. Dimitrakos et al. (Eds.): FAST 2006, LNCS 4691, pp. 16–30, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Timed Calculus of Cryptographic Communication 17

In tBEL, time — in particular, a time stamp — is real-number valued, yielding a
dense time domain. We contend that real-valued time-stamps are too fine-grained be-
cause protocol messages have finite length, which implies that real numbers are not
transmittable as such. Moreover, real clocks only have finite precision. tBEL does pro-
vide local clocks, yet they “advance at the same rate as time.” [5, Page 2]. Further,
adversarial break of short-term keys is modelled only indirectly with a parallel process
rather than directly as part of the adversary model. Furthermore, tBEL lacks a process
equivalence. On the other hand, tBEL comes with a (third-order) special-purpose logic
for reasoning about tBEL models, and a decision procedure for a class of reachability
properties of bounded protocols based on syntactic control points. In our opinion, tBEL
and its associated logic are unnecessarily domain-specific. They seem to have been built
from scratch rather than as Occham’s-razor extensions of untimed formalisms. Adding
real-time to a model or logic without explicit time can be simple [7].

In contrast to the models discussed, tC3 extends C3 [8] with (1) rational-number
valued time (which still is dense), (2) local clocks that may progress at different rates
across different locations, and (3) adversarial break of short-term keys based on
ciphertext-only attacks enabled by key expiration. Moreover, tC3 comes with a notion
of observational process equivalence for model-based protocol specification and veri-
fication. As a property-based complement, we have also co-designed a logic, namely
tCPL [9,10], for tC3. The three primary features of the co-design of tC3 and tCPL are
that (1) tC3’s notion of execution is a temporal accessibility relation for tCPL’s tem-
poral modalities, (2) tC3’s notion of observational equivalence and tCPL’s notion of
propositional knowledge have a common definitional basis, namely an epistemic acces-
sibility relation defined in terms of structurally indistinguishable protocol histories, and
(3) execution constraints of tC3-processes are checkable via tCPL-satisfaction. These
three features, especially Feature 2, are the result of our wholistic conception of model-
based (process algebra) and property-based (modal logic) specification and verification
as two truly complementary approaches. Other important features of C3, and thus of
tC3, are explicit out-of-band communication and history-based key (and for tC3, clock
value) lookup. C3 neatly extends to tC3 by maintaining backwards compatibility. Es-
sentially, only two additional axioms (and no modified axioms/rules!) are needed in its
operational semantics.

2 Definition

Our timed Calculus of Cryptographic Communication is a conservative extension of a
core calculus [8]. Core C3 consists of a language of distributed processes and an as-
sociated notion of concurrent execution in the style of structural operational semantics
(SOS). Its modelling hypotheses are those of abstract ideal cryptography and interleav-
ing concurrency. Cryptography is abstract in the sense that communicated information
atoms (names) are logical constants and communicated information compounds are
syntactic terms. We use pattern matching as a linguistic abstraction for cryptographic
computation. Cryptography is ideal in the sense that cryptographic primitives are as-
sumed to be perfect, i.e., unbreakable. Process execution engenders the activity of pro-
tocol participants and the standard Dolev-Yao adversary ���, i.e., the generation of a


