
Constructive Interval Disjunction

Gilles Trombettoni1 and Gilles Chabert2

1 University of Nice-Sophia and COPRIN Project, INRIA, 2004 route des
lucioles, 06902 Sophia.Antipolis cedex, B.P. 93, France

2 ENSIETA, 2 rue François Verny, 29806 Brest cedex 09, France
trombe@sophia.inria.fr, gilles.chabert@ensieta.com

Abstract. This paper presents two new filtering operators for numerical
CSPs (systems with constraints over the reals) based on constructive dis-
junction, as well as a new splitting heuristic. The fist operator (CID) is a
generic algorithm enforcing constructive disjunction with intervals. The
second one (3BCID) is a hybrid algorithm mixing constructive disjunc-
tion and shaving, another technique already used with numerical CSPs
through the algorithm 3B. Finally, the splitting strategy learns from the
CID filtering step the next variable to be split, with no overhead.

Experiments have been conducted with 20 benchmarks. On several
benchmarks, CID and 3BCID produce a gain in performance of orders
of magnitude over a standard strategy. CID compares advantageously to
the 3B operator while being simpler to implement. Experiments suggest
to fix the CID-related parameter in 3BCID, offering thus to the user a
promising variant of 3B.

1 Introduction

We propose in this paper new advances in the use of two refutation principles
of constraint programming: shaving and constructive disjunction. We first intro-
duce shaving and then proceed to constructive disjunction that will be considered
an improvement of the former.

The shaving principle is used to compute the singleton arc-consistency (SAC)
of finite-domain CSPs [3] and the 3B-consistency of numerical CSPs [7]. It is
also in the core of the SATZ algorithm [9] proving the satisfiability of boolean
formula. Shaving works as follows. A value is temporarily assigned to a vari-
able (the other values are temporarily discarded) and a partial consistency is
computed on the remaining subproblem. If an inconsistency is obtained then
the value can be safely removed from the domain of the variable. Otherwise,
the value is kept in the domain. This principle of refutation has two drawbacks.
Contrarily to arc consistency, this consistency is not incremental [2]. Indeed,
the work of the underlying refutation algorithm on the whole subproblem is the
reason why a single value can be removed. Thus, obtaining the singleton arc
consistency on finite-domain CSPs requires an expensive fixed-point propaga-
tion algorithm where all the variables must be handled again every time a single
value is removed [3]. SAC2 [1] and SAC-optim [2] and other SAC variants ob-
tain better average or worst time complexity by managing heavy data structures

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 635–650, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



636 G. Trombettoni and G. Chabert

for the supports of values (like with AC4) or by duplicating the CSP for every
value. However, using these filtering operators inside a backtracking scheme is
far from being competitive with the standard MAC algorithm in the current
state of research. In its QuickShaving [8], Lhomme uses this shaving principle
in a pragmatic way, i.e., with no overhead, by learning the promising variables
(i.e., those that can possibly produce gains with shaving in the future) during the
search. Researchers and practitioners have also used for a long time the shaving
principle in scheduling problems. On numerical CSPs, the 2B-consistency is the
refutation algorithm used by 3B-consistency [7]. This property limited to the
bounds of intervals explains that 3B-consistency filtering often produces gains
in performance.

Example. Figure 1 (left) shows the first two steps of the 3B-consistency algo-
rithm. Since domains are continuous, shaving does not instantiate a variable to
a value but restricts its domain to a sub-interval of fixed size located at one of
the endpoints. The subproblems are represented with slices in light gray. The 2B-
consistency projects every constraint onto a variable and intersects the result of
all projections. In the leftmost slice, 2B-consistency leads to an empty box since
the projections of the first and the second constraint onto x2 are two intervals I1

and I2 with empty intersection. On the contrary, the fixed-point of projections
in the rightmost slice is a nonempty box (with thick border).

The second drawback of shaving is that the pruning effort performed by the
partial consistency operator to refute a given value is lost, which is not the case
with constructive disjunction1.

Constructive disjunction was proposed by Van Hentenryck et al. in the nineties
to handle efficiently disjunctions of constraints, thus tackling a more general
model than the standard CSP model [17]. The idea is to propagate independently
every term of the disjunction and to perform the union of the different pruned
search spaces. In other terms, a value removed by every propagation process
(run with one term/constraint of the disjunct) can be safely removed from the
ground CSP. This idea is fruitful in several fields such as scheduling, where a
common constraint is that two given tasks cannot overlap, or 2D bin packing
problems where two rectangles must not overlap.

Constructive disjunction can also be used to handle the classical CSP model
(where the problem is viewed as a conjunction of constraints). Indeed, every
variable domain can be viewed as a unary disjunctive constraint that imposes
one value among the different possible ones (x = v1 ∨ ... ∨ x = vn, where x is
a variable and v1, ..., vn are the different values). In this specific case, similarly
to shaving, the constructive disjunction principle can be applied as follows. Ev-
ery value in the domain of a variable is assigned in turn to this variable (the
other values are temporarily discarded), and a partial consistency on the cor-
responding subproblems is computed. The search space is then replaced by the
union of the resulting search spaces. One advantage over shaving is that the

1 Note that optimized implementations of SAC reuse the domains obtained by subfil-
tering in subsequent calls to the shaving of a same variable.


