
Contraction Hierarchies: Faster and Simpler
Hierarchical Routing in Road Networks�

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany
{robert.geisberger,sanders,schultes,delling}@ira.uka.de

Abstract. We present a route planning technique solely based on the
concept of node contraction. The nodes are first ordered by ‘importance’.
A hierarchy is then generated by iteratively contracting the least impor-
tant node. Contracting a node v means replacing shortest paths going
through v by shortcuts. We obtain a hierarchical query algorithm using
bidirectional shortest-path search. The forward search uses only edges
leading to more important nodes and the backward search uses only
edges coming from more important nodes. For fastest routes in road net-
works, the graph remains very sparse throughout the contraction pro-
cess using rather simple heuristics for ordering the nodes. We have five
times lower query times than the best previous hierarchical Dijkstra-
based speedup techniques and a negative space overhead, i.e., the data
structure for distance computation needs less space than the input graph.
CHs can be combined with many other route planning techniques, lead-
ing to improved performance for many-to-many routing, transit-node
routing, goal-directed routing or mobile and dynamic scenarios.

1 Introduction

Planning optimal routes in road networks has recently attracted considerable
interest in algorithm engineering because it is an important application that
admits a lot of interesting algorithmic approaches. Many of these techniques
exploit the hierarchical nature of road networks in some way or another.

Here we present a very simple approach to hierarchical routing. Assume the
nodes of a weighted directed graph G = (V, E) are numbered 1..n in order of
ascending ‘importance’. We now construct a hierarchy by contracting the nodes
in this order. A node v is contracted by removing it from the network in such
a way that shortest paths in the remaining overlay graph are preserved. This
property is achieved by replacing paths of the form 〈u, v, w〉 by a shortcut edge
〈u, w〉. Note that the shortcut 〈u, w〉 is only required if 〈u, v, w〉 is the only
shortest path from u to w.

� Partially supported by DFG grant SA 933/1-3, and by the Future and Emerging
Technologies Unit of EC (IST priority – 6th FP), under contract no. FP6-021235-2
(project ARRIVAL).

C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 319–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



320 R. Geisberger et al.

We shall view the contraction process as a way to add all discovered shortcuts
to the edge set E. We obtain a contraction hierarchy (CH). Section 2 gives more
details.

In Section 3 we explain how the nodes are ordered. Although ‘optimal’ node
ordering seems a quite difficult problem, already very simple local heuristics
turn out to work quite well. The basic idea is to keep the nodes in a priority
queue sorted by some estimate of how attractive it is to contract a node. The
main ingredient of this heuristic estimate is the edge difference: The number of
shortcuts introduced when contracting v minus the number of edges incident
to v. The intuition behind this is that the contracted graph should have as few
edges as possible. Even using only edge difference, quite good CHs are computed.
However, further refinements are useful. In particular, it is important to contract
nodes ‘uniformly’.

For routing, we split the CH (V, E) into an upward graph G↑:= (V, E↑) with
E↑:= {(u, v) ∈ E : u < v} and a downward graph G↓:= (V, E↓) with E↓ :=
{(u, v) ∈ E : u > v}. For a shortest path query from s to t, we perform a mod-
ified bidirectional Dijkstra shortest path search, consisting of a forward search
in G↑ and a backward search in G↓. If, and only if, there exists a shortest s-t-
path in the original graph, then both search scopes eventually meet at a node
v that has the highest order of all nodes in a shortest s-t-path. More details of
the query algorithm are given in Section 4. Applications and refinements like
dynamic routing (i.e., edge weights are allowed to change), many-to-many rout-
ing, and combinations with other speedup techniques can be found in Section 5.
Section 6 shows that in many cases, we get significant improvements over previ-
ous techniques for large real world inputs. Lessons learned and possible future
improvements are summarized in Section 7.

Related Work

Since there has recently been extensive work on speed-up techniques, we can only
give a very abridged overview with emphasis on the directly related techniques
beginning with the closest kin. For a more detailed overview we refer to [1,2].
CHs are an extreme case of the hierarchies in highway-node routing (HNR)
[3,2] – every node defines its own level of the hierarchy. CHs are nevertheless
a new approach in the sense that the node ordering and hierarchy construction
algorithms used in [3,2] are only efficient for a small number of geometrically
shrinking levels. We also give a faster and more space efficient query algorithm
using G↑ and G↓.

The node ordering in highway-node routing uses levels computed by highway
hierarchies (HHs) [4,5,2]. Our original motivation for CHs was to simplify HNR
by obviating the need for another (more complicated) speedup technique (HHs)
for node ordering. HHs are constructed by alternating between two subroutines:
Edge reduction is a sophisticated and relatively costly routine that only keeps
edges required ‘in the middle’ of ‘long-distance’ paths. Node reduction contracts
nodes. In the original paper for undirected HHs [5], node reduction only con-
tracted nodes of degrees one and two, i.e., it removed attached trees and multihop


