Formal JVM Code Analysis in JavaFAN

Azadeh Farzan, José Meseguer, and Grigore Rogu

Department of Computer Science,
University of Illinois at Urbana-Champaign
{afarzan,meseguer,grosu}@cs.uiuc.edu

Abstract. JavaFAN uses a Maude rewriting logic specification of the
JVM semantics as the basis of a software analysis tool with competitive
performance. It supports formal analysis of concurrent JVM programs
by means of symbolic simulation, breadth-first search, and LTL model
checking. We discuss JavaFAN’s executable formal specification of the
JVM, illustrate its formal analysis capabilities using several case studies,
and compare its performance with similar Java analysis tools.

1 Introduction

There is a general belief in the algebraic specification community that all tra-
ditional programming language features can be described with equational spec-
ifications [2,9,29]. What is less known, or tends to be ignored, is that concur-
rency, which is a feature of almost any current programming language, cannot
be naturally handled by equational specifications, unless one makes determinis-
tic restrictions on how the different processes or threads are interleaved. While
some of these restrictions may be acceptable, as most programming languages
also provide thread or process scheduling algorithms, most of them are unac-
ceptable in practice because concurrent execution typically depends upon the
external environment, which is unpredictable. Rewriting logic [17] extends equa-
tional logic with rewriting rules and has been mainly introduced as a unified
model of concurrency; indeed, many formal theories of concurrency have been
naturally mapped into rewriting logic during the last decade.

A next natural challenge is to define mainstream concurrent programming
languages in rewriting logic and then use those definitions to build formal anal-
ysis tools for such languages. There is already a substantial body of case studies,
of which we only mention [25, 24, 28], backing up one of the key claims of this pa-
per, namely that rewriting logic can be fruitfully used as a unifying framework for
defining programming languages. Further evidence on this claim includes model-
ing of a wide range of programming language features that has been developed
and tested as part of a recent course taught at the University of Illinois [22]. In
this paper we give detailed evidence for a second key claim, namely that rewrit-
ing logic specifications can be used in practice to build simulators and formal
analysis tools for mainstream programming languages such as Java with com-
petitive performance. Here, we focus on Java’s bytecode, but our methodology
is general and can be applied also to the Java source code level and to many
other languages.

C. Rattray et al. (Eds.): AMAST 2004, LNCS 3116, pp. 132-147, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Formal JVM Code Analysis in JavaFAN 133

The JavaFAN (Java Formal Analyzer) tool specifies the semantics of the
most commonly used JVM bytecode instructions (150 out of the 250 total) as a
Maude module specifying a rewrite theory Tyvy = (X5vMm, Eyvm, RivMm), where
(X3vm, Eyvam) is an equational theory giving an algebraic semantics with se-
mantic equations Ejyynm to the deterministic JVM instructions, whereas Rjyyvm
is a set of rewrite rules, with concurrent transition semantics, specifying the be-
havior of all concurrent JVM instructions. The three kinds of formal analysis
currently supported in JavaFAN are: (1) symbolic simulation, where the theory
Tyvm is executed in Maude as a JVM intepreter supporting fair execution and
allowing some input values to be symbolic; (2) breadth-first search, where the
entire, possibly infinite, state space of a program is explored starting from its
initial state using Maude’s search command to find safety property violations;
and (3) model checking, where if a program’s set of reachable states is finite, lin-
ear time temporal logic (LTL) properties are verified using Maude’s LTL model
checker.

A remarkable fact is that, as we explain in Section 4, even though Ty gives
indeed a mathematical semantics to the JVM, it becomes the basis of a formal
analysis tool whose performance is competitive and in some cases surpasses that
of other Java analysis tools. The reasons for this are twofold. On the one hand,
Maude [3] is a high-performance logical engine, achieving millions of rewrites
per second on real applications, efficiently supporting search, and performing
model checking with performance similar to that of SPIN [13]. On the other, the
algebraic specification of system states, as well as the equations Ejyvy and rules
Rjyvwm, have been optimized for performance through several techniques explained
in Section 3.5, including keeping only the dynamic parts of the state explicitly
in the state representation, and making most equations and rules unconditional.
In this regard, rewriting logic’s distinction between the equations Ejynm and
the rules Rjyvm has a crucial performance impact in drastically reducing the
sate space size. The point is that rewriting with the rules Rjyyy takes place
modulo the equations Ejyy, and therefore only the rules Ry affect state space
size. Our experience in specifying the JVM in rewriting logic is that we gain
the best benefits from algebraic (equations) and SOS [20] (Rules) paradigms
in a combined way, while being able to distinguish between deterministic and
concurrent features in a way not possible in either SOS or algebraic semantics.

Related Work. The different approaches to formal analysis for Java can be
classified as focusing on either sequential or concurrent programs. Our work falls
in the second category. More specifically, it belongs to a family of approaches
that use a formal executable specification of the concurrent semantics of the JVM
as a basis for formal reasoning. Two other approaches in precisely this category
are one based on the ACL2 logic and theorem prover [15], and another based
on a formal JVM semantics and reasoning based on Abstract State Machines
(ASM) [23]. Our approach seems complementary to both of these, in the sense
that it provides new formal analysis capabilities, namely search and LTL model
checking. The ACL2 work is in a sense more powerful, since it uses an inductive
theorem prover, but this greater power requires greater expertise and effort.



