Nothing Special   »   [go: up one dir, main page]

Decentralized Stochastic Bilevel Optimization with Improved per-Iteration Complexity

Published: 24 Apr 2023, Last Modified: 15 Jun 2023ICML 2023 PosterEveryoneRevisions
Abstract: Bilevel optimization recently has received tremendous attention due to its great success in solving important machine learning problems like meta learning, reinforcement learning, and hyperparameter optimization. Extending single-agent training on bilevel problems to the decentralized setting is a natural generalization, and there has been a flurry of work studying decentralized bilevel optimization algorithms. However, it remains unknown how to design the distributed algorithm with sample complexity and convergence rate comparable to SGD for stochastic optimization, and at the same time without directly computing the exact Hessian or Jacobian matrices. In this paper we propose such an algorithm. More specifically, we propose a novel decentralized stochastic bilevel optimization (DSBO) algorithm that only requires first order stochastic oracle, Hessian-vector product and Jacobian-vector product oracle. The sample complexity of our algorithm matches the currently best known results for DSBO, while our algorithm does not require estimating the full Hessian and Jacobian matrices, thereby possessing to improved per-iteration complexity.
Submission Number: 3597
Loading