Nothing Special   »   [go: up one dir, main page]

TAB: Temporal Accumulated Batch Normalization in Spiking Neural Networks

Published: 16 Jan 2024, Last Modified: 21 Apr 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Temporal Batch Normalization, Spiking Neural Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Spiking Neural Networks (SNNs) are attracting growing interest for their energy-efficient computing when implemented on neuromorphic hardware. However, directly training SNNs, even adopting batch normalization (BN), is highly challenging due to their non-differentiable activation function and the temporally delayed accumulation of outputs over time. For SNN training, this temporal accumulation gives rise to Temporal Covariate Shifts (TCS) along the temporal dimension, a phenomenon that would become increasingly pronounced with layer-wise computations across multiple layers and multiple time-steps. In this paper, we introduce TAB (Temporal Accumulated Batch Normalization), a novel SNN batch normalization method that addresses the temporal covariate shift issue by aligning with neuron dynamics (specifically the accumulated membrane potential) and utilizing temporal accumulated statistics for data normalization. Within its framework, TAB effectively encapsulates the historical temporal dependencies that underlie the membrane potential accumulation process, thereby establishing a natural connection between neuron dynamics and TAB batch normalization. Experimental results on CIFAR-10, CIFAR-100, and DVS-CIFAR10 show that our TAB method outperforms other state-of-the-art methods.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to neuroscience & cognitive science
Submission Number: 5513
Loading