Nothing Special   »   [go: up one dir, main page]

Graph Generation with $K^2$-trees

Published: 16 Jan 2024, Last Modified: 07 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Graph generative models, graph neural networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We propose a new graph generative model based on the $K^2$-tree, which is a compact and hierarchical representation for graphs.
Abstract: Generating graphs from a target distribution is a significant challenge across many domains, including drug discovery and social network analysis. In this work, we introduce a novel graph generation method leveraging $K^2$ representation, originally designed for lossless graph compression. The $K^2$ representation enables compact generation while concurrently capturing an inherent hierarchical structure of a graph. In addition, we make contributions by (1) presenting a sequential $K^2$ representation that incorporates pruning, flattening, and tokenization processes and (2) introducing a Transformer-based architecture designed to generate the sequence by incorporating a specialized tree positional encoding scheme. Finally, we extensively evaluate our algorithm on four general and two molecular graph datasets to confirm its superiority for graph generation.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 4327
Loading