Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Latent Dynamical Model, Invariant Decomposition, Neural Network, Spatio-Temporal Attention
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: We propose a new model class aimed at predicting dynamical trajectories from high-dimensional empirical data. This is done by combining variational autoencoders and (spatio-)temporal transformers within a framework designed to enforce certain scientifically-motivated invariances. The models allow inference of system behavior at any continuous time and generalization well beyond the data distributions seen during training. Furthermore, the models do not require an explicit neural ODE formulation, making them efficient and highly scalable in practice. We study behavior through simple theoretical analyses and extensive empirical experiments. The latter investigate the ability to predict the trajectories of complicated systems based on finite data and show that the proposed approaches can outperform existing neural-dynamical models. We study also more general inductive bias in the context of transfer to data obtained under entirely novel system interventions. Overall, our results provide a new framework for efficiently learning complicated dynamics in a data-driven manner, with potential applications in a wide range of fields including physics, biology, and engineering.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 4895
Loading