Nothing Special   »   [go: up one dir, main page]

How Does Semi-supervised Learning with Pseudo-labelers Work? A Case StudyDownload PDF

Published: 01 Feb 2023, Last Modified: 03 Mar 2023ICLR 2023 posterReaders: Everyone
Abstract: Semi-supervised learning is a popular machine learning paradigm that utilizes a large amount of unlabeled data as well as a small amount of labeled data to facilitate learning tasks. While semi-supervised learning has achieved great success in training neural networks, its theoretical understanding remains largely open. In this paper, we aim to theoretically understand a semi-supervised learning approach based on pre-training and linear probing. In particular, the semi-supervised learning approach we consider first trains a two-layer neural network based on the unlabeled data with the help of pseudo-labelers. Then it linearly probes the pre-trained network on a small amount of labeled data. We prove that, under a certain toy data generation model and two-layer convolutional neural network, the semisupervised learning approach can achieve nearly zero test loss, while a neural network directly trained by supervised learning on the same amount of labeled data can only achieve constant test loss. Through this case study, we demonstrate a separation between semi-supervised learning and supervised learning in terms of test loss provided the same amount of labeled data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Unsupervised and Self-supervised learning
Supplementary Material: zip
16 Replies

Loading