Nothing Special   »   [go: up one dir, main page]

Manifold Diffusion Fields

Published: 16 Jan 2024, Last Modified: 05 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Diffusion models, riemannian manifolds, graphs
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: A diffusion model for functions on manifolds and graphs
Abstract: We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample continuous functions on manifolds and is invariant with respect to rigid and isometric transformations of the manifold. In addition, we show that MDF generalizes to the case where the training set contains functions on different manifolds. Empirical results on multiple datasets and manifolds including challenging scientific problems like weather prediction or molecular conformation show that MDF can capture distributions of such functions with better diversity and fidelity than previous approaches.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: generative models
Submission Number: 2803
Loading