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Abstract

Text-based geolocation classifiers often operate with a
grid-based view of the world. Predicting document lo-
cation of origin based on text content on a geodesic grid
is computationally attractive since many standard meth-
ods for supervised document classification carry over
unchanged to geolocation in the form of predicting a
most probable grid cell for a document. However, the
grid-based approach suffers from sparse data problems
if one wants to improve classification accuracy by mov-
ing to smaller cell sizes. In this paper we investigate an
enhancement of common methods for determining the
geographic point of origin of a text document by kernel
density estimation. For geolocation of tweets we obtain
a improvements upon non-kernel methods on datasets
of U.S. and global Twitter content.

Introduction

Text-based geolocation has received much attention re-
cently. This is partly attributable to the availability of large
geotagged datasets through Wikipedia and Twitter, which
allows the evaluation of possibilities of geolocating a doc-
ument solely through its text content.

The problem of geolocating a document has often been
approached as a supervised classification problem where
the task is to associate a document with a discrete cell of
the earth’s surface, given some previous training data for
which the coordinates are known. Many standard classi-
fication approaches such as Naive Bayes can be directly
adapted to address the problem of placing a document of un-
known origin on a geodesic grid. The grid-based approach
has also been shown to be quite competitive (Serdyukov,
Murdock, and Van Zwol 2009; Wing and Baldridge 2011;
Roller et al. 2012) with other more complex models, such
as ones based on topic modeling (Eisenstein et al. 2010;
Eisenstein, Ahmed, and Xing 2011) and more involved fea-
ture engineering (Han, Cook, and Baldwin 2012). However,
discretizing the world into fixed-size bins entails a trade-
off between accuracy and the amount of data available—
the smaller and potentially more accurate the grid becomes,
the more acute is the data sparsity problem for each cell.
This has been partly addressed by work such as Roller et al.
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(2012), which uses a grid that adaptively shrinks in size so
that each cell accommodates roughly the same number of
training documents. In this work we address the data spar-
sity problem through smoothing out relevant features on a
geodesic grid by kernel density estimation, while maintain-
ing the grid model. We show that kernel density estima-
tion offers consistent and robust results compared with com-
pletely discretized models. The amount of bookkeeping is
also minimal compared with many other methods to handle
grid data sparsity.

The paper is laid out as follows: first, we examine the ba-
sic geolocation of text documents using Naive Bayes and
Kullback-Leibler divergence, and also introduce our adap-
tation of kernel density estimation to these methods. In the
following sections we present the data and the details be-
hind our experiments for geolocation using the U.S. GEO-
TEXT data set and a global WORLDTWEETS data set. This
is followed by the results and discussion.

Geolocation on a geodesic grid

In the current work we discretize the earth’s surface into
square cells C' that come in various sizes depending on the
experiment; 10° x 10°,5° x 5°,2° x 2°,1° x 1°, and
0.5° x 0.5°.

Under this model, we treat geolocating a text document as
a classification task where the object is to place an unknown
text document in the most appropriate cell ¢ € C. In our
experiments, the features we use for classification are sim-
ply the individual words in a document. Although we only
use words, there is in principle no reason why additional
features, linguistic and non-linguistic (Eriksson et al. 2010;
Youn, Mark, and Richards 2009), could not be integrated in
the methods described below.

We briefly look at two popular approaches for classifying
documents on a grid—Naive Bayes and Kullback-Leibler
divergence—and discuss our adaptation of these to use ker-
nel density estimates. Other classification methods can natu-
rally be used. However, given the large number of classes in
the task (e.g. 259,200 for 0.5° x 0.5° granularity), simpler
methods such as Naive Bayes are more practicable.

Applications

Since the Twitter platform started providing information
about the geographic location of tweeters based on self-



hablee

porque no te vas a cagar
boludo despues queres que

venga, va mafilana me animo
a ir con coleta

Figure 1: Classification output identifying Spanish dialects and regional usage (Mexican, Argentine, and Peninsular Spanish)
in three tweets using the WORLDTWEETS corpus. The most geographically indicative words are boldfaced.

reports or built-in GPSs in devices, we have witnessed a
flurry of creative applications that take advantage of this
new resource. Most applications involve supervised learn-
ing algorithms that identify tweet locations from words.
The topics of investigation have included the study of lan-
guage variation along various dimensions: socioeconomic
(Alis and Lim 2013), regional (Hong et al. 2012; Kondor et
al. 2013), and social variables of language (Eisenstein 2013).
Others have tapped into the opportunities of supporting lan-
guage and cultural education through knowledge of the ge-
ographic origin of tweets (Grosseck and Holotescu 2008;
Borau et al. 2009). The possibility of identifying disaster and
crisis tweets has also been researched (Corvey et al. 2012).
One of the intended applications of the current work is the
ability to perform fine-grained dialect distinctions automat-
ically, providing opportunities for automatic text classifica-
tion on non-tweet material. Figure 1 shows an example out-
put of our tweet location classifier tool GEOLOC, discussed
in this paper, when trained on tweets from around the globe
and provided with short Spanish-language tweets from Mex-
ico, Argentina, and Spain.

Multinomial Naive Bayes

To geolocate a document with words wy,...,w, using
Naive Bayes and words as features, we assume the standard
document classification approach of estimating

ey
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The prior probability of a document originating from a
cell P(c) is obtained by observing the number of documents
emanating from a cell in the training data, divided by the
total document count |T'|.!

- #(tac) +
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Likewise, the conditional estimate P(w;|c) is obtained
from the counts of words found in training documents in
a particular cell.

#(whc) + 5

P(wj|c) = Y iey #(ws, ¢) + B|V|

3

"We use #() to denote counts.
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Here, o and 3 are our cell and word priors, respectively,
and V is the vocabulary seen during training.

Kullback-Leibler divergence

In classifying with Kullback-Leibler (KL) divergence, we
try to find a cell whose word distribution matches the dis-
tribution of the document. Using the definition of KL-
divergence

KL(PIIQ) = 3 P(i)log 2t @
i Q)

we assume P to be the document’s distribution of words and

@ a given earth cell’s distribution of words. Then, for a cur-

rent document D to be classified, we estimate the probability

of the ith word Py; to be #(w; in D)/|D|, and the diver-

gence becomes
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using the same quantities as in Naive Bayes for the distri-
bution of a cell’s words P(w;|c) in the denominator. Clas-
sifying a document entails finding the cell with minimum
KL-divergence.

Kernel density estimation

As mentioned above, when geolocating documents with the
above methods, using smaller grid sizes leads to an imme-
diate sparse data problem since very few features/words are
observed in each cell. The idea behind kernel density estima-
tion is to smooth out the counts of documents and words over
a larger region, while simultaneously being able to maintain
a small cell size for accurate location classification. Figure
3 illustrates this smoothing effect by showing the distribu-
tion of a feature as a single point (in red) and as a density
resulting from kernel density estimation.

To this end, when estimating P(c) and P(w;|c) in the
Naive Bayes and KL-divergence classification, instead of
counts, we assign each document and feature a mass in a
cell based on a Gaussian that is centered on the actual loca-
tion where that feature or document was observed. We use a
two-dimensional spherical (isotropic) Gaussian kernel to as-
sign mass to each cell: the Gaussian has its means centered at
the latitude and longitude of the observation, and each cell



Figure 2: Aggregate density for an English word occurring
throughout the United States.

Figure 3: Illustration of areal smoothing effect for features
with kernel density estimation, showing the how the contri-
bution of a word feature is spread out over a large area.

receives the corresponding density measured at that cell’s
midpoint. We then replace our earlier count-based estimates
with the respective kernel-based ones:

5o fH(t,c) + o
Ple) =T are ©
and
P(U}AC) _ fH(wZac) +B (7)
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Here, the kernel function f g 1s simply the sum of the rel-
evant individual Gaussians at the midpoint (z, y) of cell ¢ of
the form

1 *((‘T*Hw)z‘*’(y*i‘y)z)
252
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where (1, and p,, are the observation coordinates.

We assume a spherical kernel function as a good prelimi-
nary evaluation entry point to the overall usefulness of ker-
nel density methods as spherical Gaussians can be calculated
quickly and only have one parameter to tune.’

Data

For our first experiments, we have used the GEOTEXT geo-
tagged corpus. GEOTEXT is a corpus of 377,616 geotagged
tweets originating within the United States by 9,475 users
recorded from the Twitter API in March 2010, as docu-
mented in Eisenstein et al. (2010). A document in the dataset

The only tunable parameter is a single standard deviation o,
expressing the width of the dispersion of mass of an observation.
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Figure 4: Density map of 1 million tweets sampled from the
larger WORLDTWEETS dataset.

consists of all tweets from a single user, concatenated. We
use the training/test/dev splits that come with the dataset and
are used elsewhere, yielding 5,685 documents in the training
set and 1,895 documents in the development and test sets.
While the corpus is relatively small—the raw data occupy-
ing 54MB—it has the advantage of public availability.>

For the second experiment, we used a larger global set of
geolocated tweets, WORLDTWEETS, collected during three
weeks beginning at the end of January 2014. The set con-
tains 4,870,032 randomly selected geotagged tweets from a
wide variety of languages and locations around the globe
(as seen in figure 4). We held out 10,000 tweets for develop-
ment and 10,000 for testing. In this data set, each tweet was
considered a separate document (unlike GEOTEXT where
tweets from one user are combined into one document).

Preprocessing of both the GEOTEXT and
WORLDTWEETS textual data included a basic cleanup
and tokenization by simply replacing all non-alphanumeric
symbols (except #, @, ’) with single spaces, lowercasing all
Latin characters, and segmenting on whitespace.

Replication

The program code and relevant instructions for running all
experiments are available at our website.* We release the
main program, GEOLOC, as a stand-alone utility for geolo-
cating arbitrary documents using the methods described in
this paper, and also the WORLDTWEETS dataset.

Details

In classifying tweet documents using the above methods we
also consider some additional useful implementation details
that other authors have taken advantage of.

When classifying a document in a cell ¢, we will not as-
sign the actual midpoint coordinates of the cell to the doc-
ument. Rather, we will use the centroid of all documents in
that cell seen during training time. Using a centroid instead
of the midpoint of a most likely cell to estimate location has
been noted to yield good results (Roller et al. 2012), which
is confirmed by our experiments on the development set.

3Unfortunately, some larger data sets, such as UTGE02011
(Roller et al. 2012), are not publicly available.
*http:/geoloc-kde.googlecode.com



To include a word type in the model, we require a min-
imum number of occurrences of it during training. Such a
threshold has been found to have a large impact by other
authors (Wing and Baldridge 2011). Additionally for the
GEOTEXT corpus experiments,, we use a list of 572 stop-
words for English that we ignore during training. The list
originates in the Textgrounder project (Roller et al. 2012).
In all tests, unknown words during classification are simply
discarded, as our preliminary tests on the development set
showed consistently worse results with attempts to model
unknown word distributions.

Tuning

We tune the following parameters for the density estimation
method: (1) the standard deviation of the two-dimensional
Gaussian: o, (2) the vocabulary threshold h, (3) the prior 8
for words. The document/cell prior « is fixed at 1.

Methods

We tune the parameters on the development set separately
for both the standard and density-based methods. In total,
we report on four models: NAIVEBAYES—Standard Naive
Bayes, KULLBACK-LEIBLER—KL-divergence, NAIVE-
BAYESgq4.24—Naive Bayes using kernel density estimation,
and KULLBACK-LEIBLER4.24—KL-divergence using ker-
nel density estimation, each described above. In all ap-
proaches, we tune for mean location error (rather than me-
dian). Table 2 shows the mean errors on the development
sets in kilometers with varying vocabulary thresholds and
grid sizes. As a baseline, we use the strategy of always
choosing the cell with largest document count seen in train-
ing.

A coarse grid search over o, 3, and h (threshold) was
used to fix o, after which a finer-grained 3d grid search
was used to tune 5, h (0-20), and the grid size in degrees
(0.5,1,2,5,10) (part of it is shown in table 2). The cell prior «
was fixed from the beginning at 1.0 as it has very little effect
on the GEOTEXT datasets where documents are long and
the prior gets quickly overwhelmed by the data as one ‘doc-
ument’ consists of many concatenated tweets from a single
user.

Results

The main results of our experiments of the test set of GEO-
TEXT are given in table 1. Following the results from tun-
ing on the development set, the grid sizes were set to 5
degrees for the non-kernel experiments and 1 degree for
the kernel-based ones—for comparison, we also report the
kernel-based version results on a 5-degree grid size. Over-
all, the effect of the kernel-based approach is reflected pri-
marily in the mean error distance, while the median error
is roughly similar in both types of approaches. Also, there
is little significant difference between the Naive Bayes and
KL-divergence approaches. We see an improvement to prior
work on the same data set both as regards the mean error and
the median error. The KL-divergence without kernel density
estimation produces the smallest median error at 333.4km,
while NAIVEBAYESy .24 yields the smallest mean error at
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Grid size

Thr. 0.5° 1° 2° 5° 10°

0 895.0 889.1 900.8 914.0 1029.8
2 800.2 797.5 798.6 8327 1029.0
3 753.5 7489 752.1 795.6 1030.0
5 760.7 747.7 756.2 782.1 1021.6
10 789.5 78891 7858 783.6 10029
20 894.4 887.1 890.7 873.0 1014.1

Table 2: Mean error (km) on the development set for the
Naive Bayes classifier with kernel density estimation using
different vocabulary thresholds and grid resolutions.

764.8km. The fact that KL-divergence slightly outperforms
Naive Bayes in the non-kernel setting is a result also found
in Wing and Baldridge (2011).

We note, however, that the GEOTEXT data set appears
to be too limited and non-standardized to be used for very
reliable comparison between algorithms and methods, es-
pecially that of different authors. We found large fluctua-
tions of performance on the development set based on text
preparation factors such as text normalization, whether to
retain user name and hashtag references that sometimes oc-
cur within tweets, punctuation removal strategy, and low-
ercasing. Indeed, these factors were often more important
than the specific choice of algorithm, which motivates rep-
etition of the test on the larger WORLDTWEETS. As men-
tioned above, in our final experiments, the tweets were used
as is, with only lowercasing, punctuation removal and tok-
enization.

In the results for the larger global data set (table 3),
WORLDTWEETS, we see a much larger, consistent improve-
ment with the kernel density method, with the Naive Bayes
kernel density classifier producing the smallest mean and
median error.

The kernel-based methods require a much larger model.
This is because for each word, the density for that word in
each cell for the whole grid needs to be stored. Naturally,
these matrices containing the densities are relatively sparse
and have significant weight only near the means of the ob-
servation and hence occupy little space individually. Despite
the larger model size, the kernel-based methods are not sig-
nificantly slower at classification time. If classification speed
is less of an issue compared with memory, the kernels can
also be calculated on-demand. Doing so slows down classi-
fication time to roughly 0.5s per document from 0.04s when
pre-calculated (at 1° x 1°) on GEOTEXT.

Discussion

The general areal smoothing approach presented here could
also be extended to include frameworks where several indi-
vidually inaccurate sources of knowledge are combined to
yield a location prediction. This could include IP address
information, discussion topic information, census data, and
similar material. Under such scenarios, the density measure
could be of arbitrary shape—e.g. the precise known area of
an IP address pool, boundaries of a city, boundaries of a time



Method Mean error(km)  Median error(km)  Grid size  Threshold
Most frequent cell 1157.4 756.5 5° N/A
NAIVEBAYES 855.0 352.3 5° 5
KULLBACK-LEIBLER 802.0 3334 5° 5
NAIVEBAYESkde24 764.8 357.2 1° 5
KULLBACK-LEIBLERgge2q 781.2 380.0 1° 5
NAIVEBAYESkge24 767.0 397.1 5° 5
KULLBACK-LEIBLERkge2q 767.3 400.0 5° 5

Table 1: Performance of different methods on the test set of GEOTEXT.

Method Mean(km) Median(km)
Most frequent cell 10929.8 11818.9
NAIVEBAYES 2678.9 637.0
KULLBACK-LEIBLER 2777.6 681.2
NAIVEBAYESkde24 2429.0 531.7
KULLBACK-LEIBLERkgde24 2691.0 578.0

Table 3: Performance of different methods on the test set
of WORLDTWEETS. Grid size is 1° and word threshold 5
throughout.

zone—and still integrated into a probabilistic model where
Gaussians are used to model the uncertainty of geographic
origin of an individual word.

An area of further investigation is also to evaluate the in-
dividual contribution of components that other authors have
found to enhance accuracy; these include integration of topic
models into the task (Eisenstein et al. 2010), k-d trees split-
ting of grid cells (Roller et al. 2012), n-gram information
(Priedhorsky, Culotta, and Del Valle 2014) as well as ex-
ploiting tweet metadata such as user profile information
(Han, Cook, and Baldwin 2013; 2014) and IP information
(Backstrom, Sun, and Marlow 2010) in various ways.

In the current work, no effort has been made to constrain
feature dispersion to known land masses. Including such in-
formation could also provide gains in accuracy, especially
for fine-grained grid sizes. Likewise, more general linear
(and other discriminative) classifiers—though more costly
to train with very large amounts of data—may profit from
the areal smoothing presented in this paper.

Conclusion

We have shown that a kernel-based method alleviates some
of the sparse data problems associated with geolocating doc-
uments on a discretized surface modeled as a geodesic grid
and allows for the use of much smaller grids with less data.
The kernel estimation can also be postponed until classifica-
tion time, avoiding the storage of large models, at the cost
of slightly slower classification. In such a case, the resulting
model sizes are roughly comparable with those produced by
strictly grid-based methods.

Using a kernel-based method significantly improves the
mean error on the WORLDTWEETS data set, even when
combined with a relatively simple Naive Bayes or KL-
divergence based classifier.
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