# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a349971 Showing 1-1 of 1 %I A349971 #17 Mar 01 2022 01:26:18 %S A349971 1,1,0,1,1,0,1,2,3,0,1,3,10,15,0,1,4,21,80,105,0,1,5,36,231,880,945,0, %T A349971 1,6,55,504,3465,12320,10395,0,1,7,78,935,9576,65835,209440,135135,0, %U A349971 1,8,105,1560,21505,229824,1514205,4188800,2027025,0 %N A349971 Array read by ascending antidiagonals, A(n, k) = -(-n)^k*FallingFactorial(1/n, k) for n, k >= 1. %H A349971 G. C. Greubel, Antidiagonals n = 1..50, flattened %F A349971 From _G. C. Greubel_, Feb 22 2022: (Start) %F A349971 A(n, k) = n^(k-1)*Pochhammer((n-1)/n, k-1) (array). %F A349971 T(n, k) = (n-k+1)^(k-1)*Pochhammer((n-k)/(n-k+1), k-1) (antidiagonal triangle). %F A349971 T(2*n, n) = (-1)^(n-1)*A158886(n). (End) %e A349971 Array starts: %e A349971 [1] 1, 0, 0, 0, 0, 0, 0, 0, ... A000007 %e A349971 [2] 1, 1, 3, 15, 105, 945, 10395, 135135, ... A001147 %e A349971 [3] 1, 2, 10, 80, 880, 12320, 209440, 4188800, ... A008544 %e A349971 [4] 1, 3, 21, 231, 3465, 65835, 1514205, 40883535, ... A008545 %e A349971 [5] 1, 4, 36, 504, 9576, 229824, 6664896, 226606464, ... A008546 %e A349971 [6] 1, 5, 55, 935, 21505, 623645, 21827575, 894930575, ... A008543 %e A349971 [7] 1, 6, 78, 1560, 42120, 1432080, 58715280, 2818333440, ... A049209 %e A349971 [8] 1, 7, 105, 2415, 74865, 2919735, 137227545, 7547514975, ... A049210 %e A349971 [9] 1, 8, 136, 3536, 123760, 5445440, 288608320, 17893715840, ... A049211 %e A349971 Triangle starts: %e A349971 [1] [1] %e A349971 [2] [1, 0] %e A349971 [3] [1, 1, 0] %e A349971 [4] [1, 2, 3, 0] %e A349971 [5] [1, 3, 10, 15, 0] %e A349971 [6] [1, 4, 21, 80, 105, 0] %e A349971 [7] [1, 5, 36, 231, 880, 945, 0] %e A349971 [8] [1, 6, 55, 504, 3465, 12320, 10395, 0] %e A349971 [9] [1, 7, 78, 935, 9576, 65835, 209440, 135135, 0] %t A349971 A[n_, k_] := -(-n)^k * FactorialPower[1/n, k]; Table[A[n - k + 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* _Amiram Eldar_, Dec 21 2021 *) %o A349971 (SageMath) %o A349971 def A(n, k): return -(-n)^k*falling_factorial(1/n, k) %o A349971 def T(n, k): return A(n-k+1, k) %o A349971 for n in (1..9): print([A(n, k) for k in (1..8)]) %o A349971 for n in (1..9): print([T(n, k) for k in (1..n)]) %o A349971 (Magma) [k eq n select 0^(n-1) else Round((n-k+1)^(k-1)*Gamma(k-1 + (n-k)/(n-k+1))/Gamma((n-k)/(n-k+1))): k in [1..n], n in [1..10]]; // _G. C. Greubel_, Feb 22 2022 %Y A349971 Rows 1-9: A000007, A001147, A008544, A008545, A008546, A008543, A049209, A049210, A049211. %Y A349971 Main diagonal A349731. %Y A349971 Cf. A158886, A256268. %K A349971 nonn,tabl %O A349971 1,8 %A A349971 _Peter Luschny_, Dec 21 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE