# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a309583 Showing 1-1 of 1 %I A309583 #20 Jun 17 2024 10:49:57 %S A309583 1,2,4,7,8,14,16,20,23,24,28,31,32,40,41,46,47,48,49,52,56,62,64,71, %T A309583 72,79,80,82,88,92,94,96,98,100,103,104,112,116,120,124,127,128,140, %U A309583 142,144,148,151,152,158,160,161,164,167,168,176,184,188,191,192 %N A309583 Numbers k with 1 zero in a fundamental period of A000129 mod k. %C A309583 Numbers k such that A214027(k) = 1. %C A309583 The odd numbers k satisfy A175181(k) == 2 (mod 4). %H A309583 Jianing Song, Table of n, a(n) for n = 1..5000 %o A309583 (PARI) for(k=1, 200, if(A214027(k)==1, print1(k, ", "))) %Y A309583 Cf. A175181. %Y A309583 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309583 | m=1 | m=2 | m=3 %Y A309583 -----------------------------+----------+----------+--------- %Y A309583 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309583 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309583 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309583 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309583 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309583 Numbers k such that w(k) = 1 | A053031 | this seq | A309591 %Y A309583 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A309583 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A309583 * and also A053032 U {2} %K A309583 nonn %O A309583 1,2 %A A309583 _Jianing Song_, Aug 10 2019 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE