# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a217832 Showing 1-1 of 1 %I A217832 #17 Oct 15 2012 23:17:44 %S A217832 0,1,1,2,4,8,16,32,63,126,252,502,1004,2008,4012,8024,16048,32089, %T A217832 64178,128356,256696,513392,1026784,2053538,4107076,8214152,16428241, %U A217832 32856482,65712964,131425806,262851612,525703224,1051406197,2102812394,4205624788,8411249081 %N A217832 Number of sequences of n 2's and 3's with curling number 2 and which have the form XY^2 with Y = 2. %C A217832 Equals A217929 + A217930. %H A217832 N. J. A. Sloane, Table of n, a(n) for n = 1..101 %H A217832 Index entries for sequences related to curling numbers %F A217832 If n is a multiple of 3 then a(n) = 2a(n-1)-A217929(n/3), otherwise a(n) = 2a(n-1). %F A217832 Comment from Paul Curtz, Oct 15 2012: %F A217832 From a(n+3)=1, the terms taken in threes are: 1,2,4, 8,16,32, 63,126,252, ... (*). %F A217832 a(n+4) - 2*a(n+3) = 0,0,0, 0,0,-1, 0,0,-2, 0,0,-4, 0,0,-7, 0,0,-16, 0,0,-30, 0,0,-63, 0,0,-122,... . See -A217929. This is the formula given above. %F A217832 2^n - (*) = 0,0,0,0,0,0,1,2,4,10,20,40,84,168,336,679,1358,2716,5448,... %F A217832 = b(n) with offset 0. Hence a second formula: %F A217832 b(n+1)-2*b(n)=0,0,0,0,0,1,0,0,2,0,0,4,0,0,7,0,0,16,... . (End) %Y A217832 Cf. A217929, A217930, A217931. %K A217832 nonn %O A217832 1,4 %A A217832 _N. J. A. Sloane_, Oct 15 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE