# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a201933 Showing 1-1 of 1 %I A201933 #8 Aug 03 2021 13:59:15 %S A201933 4,5,6,4,0,7,8,3,6,0,3,7,9,3,7,7,2,0,1,3,4,1,4,8,6,8,5,2,3,4,2,0,7,4, %T A201933 4,8,0,6,9,5,7,9,6,4,3,4,6,1,3,1,4,1,1,1,2,5,2,3,5,7,5,3,5,9,5,4,2,6, %U A201933 0,2,8,0,7,3,3,7,5,3,7,0,3,7,9,6,6,5,8,2,3,8,8,1,9,7,7,1,3,8,2 %N A201933 Decimal expansion of the least x satisfying x^2 + 5*x + 2 = e^x. %C A201933 See A201741 for a guide to related sequences. The Mathematica program includes a graph. %e A201933 least: -4.5640783603793772013414868523420... %e A201933 nearest to 0: -0.259069533051109108686405... %e A201933 greatest: 3.43200871161068035280379146269... %t A201933 a = 1; b = 5; c = 2; %t A201933 f[x_] := a*x^2 + b*x + c; g[x_] := E^x %t A201933 Plot[{f[x], g[x]}, {x, -5, 3.5}, {AxesOrigin -> {0, 0}}] %t A201933 r = x /. FindRoot[f[x] == g[x], {x, -4.6, -4.5}, WorkingPrecision -> 110] %t A201933 RealDigits[r] (* A201933 *) %t A201933 r = x /. FindRoot[f[x] == g[x], {x, -.3, -.2}, WorkingPrecision -> 110] %t A201933 RealDigits[r] (* A201934 *) %t A201933 r = x /. FindRoot[f[x] == g[x], {x, 3.4, 3.5}, WorkingPrecision -> 110] %t A201933 RealDigits[r] (* A201935 *) %Y A201933 Cf. A201741. %K A201933 nonn,cons %O A201933 1,1 %A A201933 _Clark Kimberling_, Dec 06 2011 %E A201933 a(87) onwards corrected by _Georg Fischer_, Aug 03 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE