# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a143609 Showing 1-1 of 1 %I A143609 #18 Mar 27 2016 22:38:21 %S A143609 2,3,10,17,58,99,338,577,1970,3363,11482,19601,66922,114243,390050, %T A143609 665857,2273378,3880899,13250218,22619537,77227930,131836323, %U A143609 450117362,768398401,2623476242,4478554083,15290740090,26102926097,89120964298,152139002499 %N A143609 Numerators of the upper principal and intermediate convergents to 2^(1/2). %C A143609 The upper principal and intermediate convergents to 2^(1/2), beginning with %C A143609 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; %C A143609 essentially, numerators=A143609 and denominators=A084068. %D A143609 Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966. %H A143609 Colin Barker, Table of n, a(n) for n = 1..1000 %H A143609 Creighton Kenneth Dement, Comments on A143608 and A143609 %H A143609 Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126. %H A143609 Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1). %F A143609 a(n) = 6 * a(n-2) - a(n-4). a(2*n) = A001541(n) if n>0. a(2*n + 1) = 2 * A001653(n + 1).- _Michael Somos_, Sep 03 2013 %F A143609 G.f.: x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4). - _Michael Somos_, Sep 03 2013 %F A143609 a(n) = (2+sqrt(2)+(-1)^n*(-2+sqrt(2)))*((-1+sqrt(2))^n+(1+sqrt(2))^n)/(4*sqrt(2)). - _Colin Barker_, Mar 27 2016 %e A143609 2*x + 3*x^2 + 10*x^3 + 17*x^4 + 58*x^5 + 99*x^6 + 338*x^7 + 577*x^8 + ... %t A143609 Rest@ CoefficientList[Series[x (2 + 3 x - 2 x^2 - x^3)/(1 - 6 x^2 + x^4), {x, 0, 30}], x] (* _Michael De Vlieger_, Mar 27 2016 *) %o A143609 (PARI) {a(n) = if( n<1, 0, polcoeff( x * (2 + 3*x - 2*x^2 - x^3) / (1 - 6*x^2 + x^4) + x * O(x^n), n))} /* _Michael Somos_, Sep 03 2013 */ %o A143609 (PARI) x='x+O('x^99); Vec(x*(2+3*x-2*x^2-x^3)/(1-6*x^2+x^4)) \\ _Altug Alkan_, Mar 27 2016 %Y A143609 Cf. A001541, A001653, A010914, A084068. %K A143609 nonn,easy %O A143609 1,1 %A A143609 _Clark Kimberling_, Aug 27 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE