# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a077444
Showing 1-1 of 1
%I A077444 #114 Feb 16 2025 08:32:48
%S A077444 2,14,82,478,2786,16238,94642,551614,3215042,18738638,109216786,
%T A077444 636562078,3710155682,21624372014,126036076402,734592086398,
%U A077444 4281516441986,24954506565518,145445522951122,847718631141214,4940866263896162,28797478952235758,167844007449518386
%N A077444 Numbers k such that (k^2 + 4)/2 is a square.
%C A077444 The equation "(k^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4.
%C A077444 Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - _Thomas Baruchel_, Sep 15 2003
%C A077444 Equivalently, 2*n^2 + 8 is a square.
%C A077444 Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - _Ctibor O. Zizka_, Nov 09 2009
%C A077444 The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - _Thomas Ordowski_, Jun 07 2013
%C A077444 a((p+1)/2) == 2 (mod p) where p is an odd prime. - _Altug Alkan_, Mar 17 2016
%D A077444 A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
%D A077444 L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
%D A077444 Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
%H A077444 Amiram Eldar, Table of n, a(n) for n = 1..1306
%H A077444 Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
%H A077444 Tanya Khovanova, Recursive Sequences
%H A077444 Prabha Sivaraman Nair and Rejikumar Karunakaran, On k-Fibonacci Brousseau Sums, J. Int. Seq. (2024) Art. No. 24.6.4. See p. 3.
%H A077444 J. J. O'Connor and E. F. Robertson, Pell's Equation. [Broken link]
%H A077444 Eric Weisstein's World of Mathematics, Pell Equation.
%H A077444 Eric Weisstein's World of Mathematics, NSW Number.
%H A077444 Index entries for linear recurrences with constant coefficients, signature (6,-1).
%F A077444 a(n) = (((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) + ((3 + 2*sqrt(2))^(n-1) - (3 - 2*sqrt(2))^(n-1))) / (2*sqrt(2)).
%F A077444 a(n) = 2*A002315(n-1).
%F A077444 Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14.
%F A077444 Offset 0, with a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = a^((2n+1)/2) - b^((2n+1)/2). a(n) = 2*(A001109(n+1) + A001109(n)) = (A003499(n+1) - A003499(n))/2 = 2*sqrt(A001108(2n+1)) = sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
%F A077444 Limit_{n->oo} a(n)/a(n-1) = 5.82842712474619009760... = 3 + 2*sqrt(2). See A156035.
%F A077444 From _R. J. Mathar_, Nov 16 2007: (Start)
%F A077444 G.f.: 2*x*(1+x)/(1-6*x+x^2).
%F A077444 a(n) = 2*(7*A001109(n) - A001109(n+1)). (End)
%F A077444 a(n) = (1+sqrt(2))^(2*n-1) - (1+sqrt(2))^(1-2*n). - _Gerson Washiski Barbosa_, Sep 19 2010
%F A077444 a(n) = floor((1 + sqrt(2))^(2*n-1)). - _Thomas Ordowski_, Jun 07 2013
%F A077444 a(n) = sqrt(2*A075870(n)^2-4). - _Derek Orr_, Jun 18 2015
%F A077444 a(n) = 2*sqrt((2*A001653(n)^2)-1). - _César Aguilera_, Jul 13 2023
%F A077444 E.g.f.: 2*(1 + exp(3*x)*(sqrt(2)*sinh(2*sqrt(2)*x) - cosh(2*sqrt(2)*x))). - _Stefano Spezia_, Aug 27 2024
%t A077444 LinearRecurrence[{6,-1},{2,14},30] (* _Harvey P. Dale_, Jul 25 2018 *)
%o A077444 (PARI) for(n=1,20,q=(1+sqrt(2))^(2*n-1);print1(contfrac(q)[1],", ")) \\ _Derek Orr_, Jun 18 2015
%o A077444 (PARI) Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ _Altug Alkan_, Mar 17 2016
%o A077444 (Magma) [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // _Vincenzo Librandi_, Jun 20 2015
%Y A077444 (A077445(n))^2 - 2*a(n) = 8.
%Y A077444 First differences of A001541.
%Y A077444 Pairwise sums of A001542.
%Y A077444 Bisection of A002203 and A080039.
%Y A077444 Cf. A001653.
%K A077444 nonn,easy,changed
%O A077444 1,1
%A A077444 _Gregory V. Richardson_, Nov 09 2002
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE