# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a008297 Showing 1-1 of 1 %I A008297 #203 Jul 21 2024 12:48:54 %S A008297 -1,2,1,-6,-6,-1,24,36,12,1,-120,-240,-120,-20,-1,720,1800,1200,300, %T A008297 30,1,-5040,-15120,-12600,-4200,-630,-42,-1,40320,141120,141120,58800, %U A008297 11760,1176,56,1,-362880,-1451520,-1693440,-846720,-211680,-28224,-2016,-72,-1,3628800,16329600,21772800,12700800 %N A008297 Triangle of Lah numbers. %C A008297 |a(n,k)| = number of partitions of {1..n} into k lists, where a list means an ordered subset. %C A008297 Let N be a Poisson random variable with parameter (mean) lambda, and Y_1,Y_2,... independent exponential(theta) variables, independent of N, so that their density is given by (1/theta)*exp(-x/theta), x > 0. Set S=Sum_{i=1..N} Y_i. Then E(S^n), i.e., the n-th moment of S, is given by (theta^n) * L_n(lambda), n >= 0, where L_n(y) is the Lah polynomial Sum_{k=0..n} |a(n,k)| * y^k. - Shai Covo (green355(AT)netvision.net.il), Feb 09 2010 %C A008297 For y = lambda > 0, formula 2) for the Lah polynomial L_n(y) dated Feb 02 2010 can be restated as follows: L_n(lambda) is the n-th ascending factorial moment of the Poisson distribution with parameter (mean) lambda. - Shai Covo (green355(AT)netvision.net.il), Feb 10 2010 %C A008297 See A111596 for an expression of the row polynomials in terms of an umbral composition of the Bell polynomials and relation to an inverse Mellin transform and a generalized Dobinski formula. - _Tom Copeland_, Nov 21 2011 %C A008297 Also the Bell transform of the sequence (-1)^(n+1)*(n+1)! without column 0. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 28 2016 %C A008297 Named after the Slovenian mathematician and actuary Ivo Lah (1896-1979). - _Amiram Eldar_, Jun 13 2021 %D A008297 Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156. %D A008297 Shai Covo, The moments of a compound Poisson process with exponential or centered normal jumps, J. Probab. Stat. Sci., Vol. 7, No. 1 (2009), pp. 91-100. %D A008297 Theodore S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176; the sequence called {!}^{n+}. For a link to this paper see A000262. %D A008297 John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44. %D A008297 S. Gill Williamson, Combinatorics for Computer Science, Computer Science Press, 1985; see p. 176. %H A008297 T. D. Noe, Rows n=1..100 of triangle, flattened %H A008297 J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013. %H A008297 P. Blasiak, K. A. Penson, and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002. %H A008297 P. Blasiak, K. A. Penson, and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004. %H A008297 Tom Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015. %H A008297 Tom Copeland, Lagrange a la Lah, 2011. %H A008297 Siad Daboul, Jan Mangaldan, Michael Z. Spivey, and Peter J. Taylor, The Lah Numbers and the n-th Derivative of exp(1/x), Math. Mag., Vol. 86, No. 1 (2013), pp. 39-47. %H A008297 Askar Dzhumadil'daev and Damir Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014-2015. [Version 1 contained many references to the OEIS, which were removed in Version 2. - _N. J. A. Sloane_, Mar 28 2015] %H A008297 Askar Dzhumadil’daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, Vol. 22, No. 4 (2015), #P4.10. %H A008297 B. S. El-Desouky, Nenad P.Cakić, and Toufik Mansour, Modified approach to generalized Stirling numbers via differential operators, Appl. Math. Lett., Vol. 23, No. 1 (2010), pp. 115-120. %H A008297 Sen-Peng Eu, Tung-Shan Fu, Yu-Chang Liang, and Tsai-Lien Wong. On xD-Generalizations of Stirling Numbers and Lah Numbers via Graphs and Rooks. arXiv:1701.00600 [math.CO], 2017. %H A008297 Milan Janjic, Some classes of numbers and derivatives, JIS, Vol. 12 (2009), pp. 09.8.3 %H A008297 Dmitry Karp and Elena Prilepkina, Generalized Stieltjes transforms: basic aspects, arXiv preprint arXiv:1111.4271 [math.CA], 2011. %H A008297 Dmitry Karp and Elena Prilepkina, Generalized Stieltjes functions and their exact order, Journal of Classical Analysis, Vol. 1, No. 1 (2012), pp. 53-74. - _N. J. A. Sloane_, Dec 25 2012. %H A008297 Udita N. Katugampola, A new Fractional Derivative and its Mellin Transform, arXiv preprint arXiv:1106.0965 [math.CA], 2011. %H A008297 Udita N. Katugampola, Mellin Transforms of the Generalized Fractional Integrals and Derivatives, arXiv preprint arXiv:1112.6031 [math.CA], 2011. %H A008297 Donald E. Knuth, Convolution polynomials, Mathematica J. 2.1 (1992), no. 4, 67-78; arXiv:math/9207221 [math.CA], 1992. %H A008297 Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seq., Vol. 3 (2000), Article 00.2.4. %H A008297 Toufik Mansour and Matthias Schork, Generalized Bell numbers and algebraic differential equations, Pure Math. Appl.(PU. MA), Vol. 23, No. 2 (2012), pp. 131-142. %H A008297 Toufik Mansour, Matthias Schork, and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.3. %H A008297 Toufik Mansour and Mark Shattuck, A polynomial generalization of some associated sequences related to set partitions, Periodica Mathematica Hungarica, Vol. 75, No. 2 (December 2017), pp. 398-412. %H A008297 Toufik Mansour, Augustine Munagi, and Mark Shattuck, Set partitions with colored singleton blocks, Discrete Mathematics Letters, 13. 100, (2024). See p. 100. %H A008297 Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics, Vol. 13, No. 2 (2019), pp. 495-517. %H A008297 Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019. %H A008297 Jose L. Ramirez and Mark Shattuck, A (p, q)-Analogue of the r-Whitney-Lah Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.5.6. %H A008297 Mark Shattuck, Identities for Generalized Whitney and Stirling Numbers, Journal of Integer Sequences, Vol. 20 (2017), Article 17.10.4. %H A008297 Mark Shattuck, Some formulas for the restricted r-Lah numbers, Annales Mathematicae et Informaticae, Vol. 49 (2018), Eszterházy Károly University Institute of Mathematics and Informatics, pp. 123-140. %H A008297 Mark Shattuck, Combinatorial Proofs of Some Stirling Number Convolution Formulas, J. Int. Seq., Vol. 25 (2022), Article 22.2.2. %H A008297 Michael Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq., Vol. 14 (2011) Article 11.9.7. %H A008297 Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021. %H A008297 Bao-Xuan Zhu, Total positivity from a generalized cycle index polynomial, arXiv:2006.14485 [math.CO], 2020. %F A008297 a(n, m) = (-1)^n*n!*A007318(n-1, m-1)/m!, n >= m >= 1. %F A008297 a(n+1, m) = (n+m)*a(n, m)+a(n, m-1), a(n, 0) := 0; a(n, m) := 0, n < m; a(1, 1)=1. %F A008297 a(n, m) = ((-1)^(n-m+1))*L(1, n-1, m-1) where L(1, n, m) is the triangle of coefficients of the generalized Laguerre polynomials n!*L(n, a=1, x). These polynomials appear in the radial l=0 eigen-functions for discrete energy levels of the H-atom. %F A008297 |a(n, m)| = Sum_{k=m..n} |A008275(n, k)|*A008277(k, m), where A008275 = Stirling numbers of first kind, A008277 = Stirling numbers of second kind. - _Wolfdieter Lang_ %F A008297 If L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k (a Lah polynomial) then the e.g.f. for L_n(y) is exp(x*y/(1-x)). - _Vladeta Jovovic_, Jan 06 2001 %F A008297 E.g.f. for the k-th column (unsigned): x^k/(1-x)^k/k!. - _Vladeta Jovovic_, Dec 03 2002 %F A008297 a(n, k) = (n-k+1)!*N(n, k) where N(n, k) is the Narayana triangle A001263. - _Philippe Deléham_, Jul 20 2003 %F A008297 From Shai Covo (green355(AT)netvision.net.il), Feb 02 2010: (Start) %F A008297 We have the following expressions for the Lah polynomial L_n(y) = Sum_{k=0..n} |a(n, k)|*y^k -- exact generalizations of results in A000262 for A000262(n) = L_n(1): %F A008297 1) L_n(y) = y*exp(-y)*n!*M(n+1,2,y), n >= 1, where M (=1F1) is the confluent hypergeometric function of the first kind; %F A008297 2) L_n(y) = exp(-y)* Sum_{m>=0} y^m*[m]^n/m!, n>=0, where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial; %F A008297 3) L_n(y) = (2n-2+y)L_{n-1}(y)-(n-1)(n-2)L_{n-2}(y), n>=2; %F A008297 4) L_n(y) = y*(n-1)!*Sum_{k=1..n} (L_{n-k}(y) k!)/((n-k)! (k-1)!), n>=1. (End) %F A008297 The row polynomials are given by D^n(exp(-x*t)) evaluated at x = 0, where D is the operator (1-x)^2*d/dx. Cf. A008277 and A035342. - _Peter Bala_, Nov 25 2011 %F A008297 n!C(-xD,n) = Lah(n,:xD:) where C(m,n) is the binomial coefficient, xD= x d/dx, (:xD:)^k = x^k D^k, and Lah(n,x) are the row polynomials of this entry. E.g., 2!C(-xD,2)= 2 xD + x^2 D^2. - _Tom Copeland_, Nov 03 2012 %F A008297 From _Tom Copeland_, Sep 25 2016: (Start) %F A008297 The Stirling polynomials of the second kind A048993 (A008277), i.e., the Bell-Touchard-exponential polynomials B_n[x], are umbral compositional inverses of the Stirling polynomials of the first kind signed A008275 (A130534), i.e., the falling factorials, (x)_n = n! binomial(x,n); that is, umbrally B_n[(x).] = x^n = (B.[x])_n. %F A008297 An operational definition of the Bell polynomials is (xD_x)^n = B_n[:xD:], where, by definition, (:xD_x:)^n = x^n D_x^n, so (B.[:xD_x:])_n = (xD_x)_n = :xD_x:^n = x^n (D_x)^n. %F A008297 Let y = 1/x, then D_x = -y^2 D_y; xD_x = -yD_y; and P_n(:yD_y:) = (-yD_y)_n = (-1)^n (1/y)^n (y^2 D_y)^n, the row polynomials of this entry in operational form, e.g., P_3(:yD_y:) = (-yD_y)_3 = (-yD_y) (yD_y-1) (yD_y-2) = (-1)^3 (1/y)^3 (y^2 D_y)^3 = -( 6 :yD_y: + 6 :yD_y:^2 + :yD_y:^3 ) = - ( 6 y D_y + 6 y^2 (D_y)^2 + y^3 (D_y)^3). %F A008297 Therefore, P_n(y) = e^(-y) P_n(:yD_y:) e^y = e^(-y) (-1/y)^n (y^2 D_y)^n e^y = e^(-1/x) x^n (D_x)^n e^(1/x) = P_n(1/x) and P_n(x) = e^(-1/x) x^n (D_x)^n e^(1/x) = e^(-1/x) (:x D_x:)^n e^(1/x). (Cf. also A094638.) (End) %F A008297 T(n,k) = Sum_{j=k..n} (-1)^j*A008296(n,j)*A360177(j,k). - _Mélika Tebni_, Feb 02 2023 %e A008297 |a(2,1)| = 2: (12), (21); |a(2,2)| = 1: (1)(2). |a(4,1)| = 24: (1234) (24 ways); |a(4,2)| = 36: (123)(4) (6*4 ways), (12)(34) (3*4 ways); |a(4,3)| = 12: (12)(3)(4) (6*2 ways); |a(4,4)| = 1: (1)(2)(3)(4) (1 way). %e A008297 Triangle: %e A008297 -1; %e A008297 2, 1; %e A008297 -6, -6, -1; %e A008297 24, 36, 12, 1; %e A008297 -120, -240, -120, -20, -1; ... %p A008297 A008297 := (n,m) -> (-1)^n*n!*binomial(n-1,m-1)/m!; %t A008297 a[n_, m_] := (-1)^n*n!*Binomial[n-1, m-1]/m!; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Dec 12 2012, after Maple *) %o A008297 (Sage) %o A008297 def A008297_triangle(dim): # computes unsigned T(n, k). %o A008297 M = matrix(ZZ,dim,dim) %o A008297 for n in (0..dim-1): M[n,n] = 1 %o A008297 for n in (1..dim-1): %o A008297 for k in (0..n-1): %o A008297 M[n,k] = M[n-1,k-1]+(2+2*k)*M[n-1,k]+((k+1)*(k+2))*M[n-1,k+1] %o A008297 return M %o A008297 A008297_triangle(9) # _Peter Luschny_, Sep 19 2012 %o A008297 (Haskell) %o A008297 a008297 n k = a008297_tabl !! (n-1) !! (k-1) %o A008297 a008297_row n = a008297_tabl !! (n-1) %o A008297 a008297_tabl = [-1] : f [-1] 2 where %o A008297 f xs i = ys : f ys (i + 1) where %o A008297 ys = map negate $ %o A008297 zipWith (+) ([0] ++ xs) (zipWith (*) [i, i + 1 ..] (xs ++ [0])) %o A008297 -- _Reinhard Zumkeller_, Sep 30 2014 %o A008297 (PARI) T(n, m) = (-1)^n*n!*binomial(n-1, m-1)/m! %o A008297 for(n=1,9, for(m=1,n, print1(T(n,m)", "))) \\ _Charles R Greathouse IV_, Mar 09 2016 %o A008297 (Perl) use bigint; use ntheory ":all"; my @L; for my $n (1..9) { push @L, map { stirling($n,$_,3)*(-1)**$n } 1..$n; } say join(", ",@L); # _Dana Jacobsen_, Mar 16 2017 %Y A008297 Same as A066667 and A105278 except for signs. Other variants: A111596 (differently signed triangle and (0,0)-based), A271703 (unsigned and (0,0)-based), A089231. %Y A008297 A293125 (row sums) and A000262 (row sums of unsigned triangle). %Y A008297 Columns 1-6 (unsigned): A000142, A001286, A001754, A001755, A001777, A001778. %Y A008297 A002868 gives maximal element (in magnitude) in each row. %Y A008297 A248045 (central terms, negated). A130561 is a natural refinement. %Y A008297 Cf. A007318, A048786, A001263, A008275, A008277, A048993, A094638, A130534. %Y A008297 Cf. A008296, A360177. %K A008297 sign,tabl,nice,easy %O A008297 1,2 %A A008297 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE