Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a262221 -id:a262221
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (n+1)*(2-n)/2.
+10
35
1, 1, 0, -2, -5, -9, -14, -20, -27, -35, -44, -54, -65, -77, -90, -104, -119, -135, -152, -170, -189, -209, -230, -252, -275, -299, -324, -350, -377, -405, -434, -464, -495, -527, -560, -594, -629, -665, -702, -740, -779, -819, -860, -902, -945, -989, -1034, -1080, -1127, -1175, -1224, -1274, -1325, -1377
OFFSET
0,4
COMMENTS
Coefficient of x in the polynomial C(n,0)+C(n+1,1)x+C(n+2,2)x(x-1)/2.
Equals A154990 * [1,2,3,...]. - Gary W. Adamson & Mats Granvik, Jan 19 2009
a(n) is essentially the case 1 of the polygonal numbers. The polygonal numbers are defined as P_k(n) = Sum_{i=1..n} ((k-2)*i-(k-3)). Thus P_1(n) = n*(3-n)/2 and a(n) = P_1(n+1). See A005563 for the case k=0. - Peter Luschny, Jul 08 2011
This is the case k=-1 of the formula (k*m*(m+1)-(-1)^k+1)/2. See similar sequences listed in A262221. - Bruno Berselli, Sep 17 2015
FORMULA
a(n) = 2*(C(n+1, 1)-C(n+2, 2)) = (n+1)*(2-n)/2.
G.f.: (1-2*x)/(1-x)^3. - R. J. Mathar, Jun 11 2009
If we define f(n,i,a) = Sum_{k=0..n-i} (binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j)), then a(n) = f(n,n-1,2), for n>=3. - Milan Janjic, Dec 20 2008
E.g.f.: exp(x)*(1-x^2/2). - Zerinvary Lajos, Apr 05 2009, R. J. Mathar, Jun 11 2009
a(n) = - A214292(n,1) for n > 0. - Reinhard Zumkeller, Jul 12 2012
Recurrence: a(0)=1, a(n+1) = a(n) - n. Also a(n)=(n+1)-Sum[k=1..n](k). Also a(n) = A000027(n+1) - A000217(n). Also, for n>1, a(n) = - A000096(n-2). - Stanislav Sykora, Feb 19 2014
Sum_{n>=3} 1/a(n) = -11/9. - Amiram Eldar, Sep 26 2022
EXAMPLE
a(5) = 6-(1+2+3+4+5). - Stanislav Sykora, Feb 19 2014
MAPLE
G(x):=exp(x)*(x-x^2/2): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=1..54 ); # Zerinvary Lajos, Apr 05 2009
MATHEMATICA
f[n_] := n; lst = {}; Do[a = f[n]; Do[a -= f[m], {m, n - 1, 1, -1}]; AppendTo[lst, a], {n, 46}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
FoldList[#1 - #2 &, 1, Range[0, 44]] (* Arkadiusz Wesolowski, May 26 2013 *)
LinearRecurrence[{3, -3, 1}, {1, 1, 0}, 60] (* Harvey P. Dale, Nov 29 2019 *)
PROG
(Magma) [(n+1)*(2-n)/2: n in [0..80]]; // Vincenzo Librandi, Jul 08 2011
(PARI) a(n)=(n+1)*(2-n)/2;
KEYWORD
sign,easy
AUTHOR
Paul Barry, Mar 01 2003
EXTENSIONS
Lajos e.g.f. adapted to offset zero by R. J. Mathar, Jun 11 2009
STATUS
approved
Centered 24-gonal numbers.
+10
20
1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
OFFSET
1,2
COMMENTS
Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011
FORMULA
a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022
EXAMPLE
a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
MATHEMATICA
FoldList[#1 + #2 &, 1, 24 Range@ 45] (* Robert G. Wilson v *)
Table[12n^2-12n+1, {n, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 25, 73}, 50] (* Harvey P. Dale, Jul 17 2011 *)
PROG
(PARI) a(n)=12*n^2-12*n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Terrel Trotter, Jr., Apr 10 2002
EXTENSIONS
More terms from Harvey P. Dale, Jul 17 2011
STATUS
approved
a(n) = 12*n*(n-1).
+10
3
0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672
OFFSET
0,3
REFERENCES
Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III_2, Heft 3, Leipzig: B. G. Teubner, 1906, p. 341.
FORMULA
a(n) = 24*(n-1) + a(n-1) for n>0, with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(0)=0, a(1)=0, a(2)=24, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 22 2015
G.f.: -(24*x^2)/(x-1)^3. - Harvey P. Dale, Jul 22 2015
a(n) = 2*A003154(n) - 2. See Twin Stars illustration. - Leo Tavares, Aug 23 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=2} 1/a(n) = 1/12.
Sum_{n>=2} (-1)^n/a(n) = (2*log(2) - 1)/12.
Product_{n>=2} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=2} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)
MATHEMATICA
Table[12n(n-1), {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 0, 24}, 40] (* Harvey P. Dale, Jul 22 2015 *)
Join[{0}, 24*Accumulate[Range[0, 60]]] (* Harvey P. Dale, Dec 17 2022 *)
PROG
(PARI) a(n)=12*n*(n-1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001
STATUS
approved
a(n) = 13*n*(n+1).
+10
2
0, 26, 78, 156, 260, 390, 546, 728, 936, 1170, 1430, 1716, 2028, 2366, 2730, 3120, 3536, 3978, 4446, 4940, 5460, 6006, 6578, 7176, 7800, 8450, 9126, 9828, 10556, 11310, 12090, 12896, 13728, 14586, 15470, 16380, 17316, 18278, 19266, 20280, 21320, 22386, 23478
OFFSET
0,2
FORMULA
a(n) = 26 * A000217(n).
G.f.: 26*x/(1-x)^3. - Vincenzo Librandi, Sep 28 2013
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Sep 28 2013
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/Pi)*cos(sqrt(17/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/Pi)*cos(3*Pi/(2*sqrt(13))). (End)
MATHEMATICA
Table[13 n (n + 1), {n, 0, 50}] (* or *) CoefficientList[Series[26 x/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Sep 28 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 26, 78}, 50] (* Harvey P. Dale, Apr 08 2014 *)
PROG
(Magma) [13*n*(n+1): n in [0..40]]; /* or */ I:=[0, 26, 78]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..40]]; // Vincenzo Librandi, Sep 28 2013
(PARI) a(n)=13*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 16 2010
EXTENSIONS
Incorrect formulas and examples deleted by R. J. Mathar, Jan 04 2011
STATUS
approved
a(0) = 1, a(n) = 25*n^2 + 2 for n > 0.
+10
1
1, 27, 102, 227, 402, 627, 902, 1227, 1602, 2027, 2502, 3027, 3602, 4227, 4902, 5627, 6402, 7227, 8102, 9027, 10002, 11027, 12102, 13227, 14402, 15627, 16902, 18227, 19602, 21027, 22502, 24027, 25602, 27227, 28902, 30627, 32402, 34227, 36102, 38027, 40002
OFFSET
0,2
COMMENTS
Subsequence of A160842. - Bruno Berselli, Feb 06 2012
The identity (25*n^2 + 1)^2 - (25*n^2 + 2)*(5*n)^2 = 1 can be written as (A016850(n+1) + 1)^2 - a(n+1)*A008587(n+1)^2 = 1. - Vincenzo Librandi, Feb 08 2012
FORMULA
G.f.: (1+x)*(1 + 23*x + x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*25 + 2)*e^x - 1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) =3/4+sqrt(2)/20*Pi*coth(Pi*sqrt(2)/5) = 1.062575323280590.. - R. J. Mathar, May 07 2024
a(n) = A262221(n)+A262221(n+1). - R. J. Mathar, May 07 2024
MATHEMATICA
Join[{1}, 25 Range[40]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {27, 102, 227}, 50]] (* Vincenzo Librandi, Feb 08 2012 *)
PROG
(PARI) A010015(n)=25*n^2+2-!n \\ M. F. Hasler, Feb 14 2012
CROSSREFS
Cf. A206399.
KEYWORD
nonn,easy
STATUS
approved
Alternating sum of centered 25-gonal numbers.
+10
1
1, -25, 51, -100, 151, -225, 301, -400, 501, -625, 751, -900, 1051, -1225, 1401, -1600, 1801, -2025, 2251, -2500, 2751, -3025, 3301, -3600, 3901, -4225, 4551, -4900, 5251, -5625, 6001, -6400, 6801, -7225, 7651, -8100, 8551, -9025, 9501, -10000, 10501
OFFSET
0,2
COMMENTS
The absolute value alternating sum of centered k-gonal numbers gives concentric k-gonal numbers.
More generally, the ordinary generating function for the alternating sum of centered k-gonal numbers is (1 - (k - 2)*x + x^2)/((1 - x)*(1 + x)^3).
FORMULA
G.f.: (1 - 23*x + x^2)/((1 - x)*(1 + x)^3).
E.g.f.: (1/8)*(-21*exp(x) + (29 - 150*x + 50*x^2)*exp(-x)).
a(n) = -2*a(n-1) + 2*a(n-3) + a(n-4).
a(n) = ((-1)^n*(50*n^2 + 100*n + 29) - 21)/8.
MAPLE
A270693:=n->((-1)^n*(50*n^2 + 100*n + 29) - 21)/8: seq(A270693(n), n=0..100); # Wesley Ivan Hurt, Sep 18 2017
MATHEMATICA
LinearRecurrence[{-2, 0, 2, 1}, {1, -25, 51, -100}, 41]
Table[((-1)^n (50 n^2 + 100 n + 29) - 21)/8, {n, 0, 40}]
PROG
(PARI) x='x+O('x^100); Vec((1-23*x+x^2)/((1-x)*(1+x)^3)) \\ Altug Alkan, Mar 21 2016
(Magma) [((-1)^n*(50*n^2 + 100*n + 29) - 21)/8 : n in [0..40]]; // Wesley Ivan Hurt, Mar 21 2016
KEYWORD
easy,sign
AUTHOR
Ilya Gutkovskiy, Mar 21 2016
STATUS
approved
Centered 25-gonal primes.
+10
1
151, 251, 701, 1951, 3001, 4751, 10151, 12401, 16651, 19501, 28201, 29401, 33151, 38501, 39901, 45751, 56951, 63901, 65701, 81001, 87151, 95701, 104651, 114001, 136501, 144451, 147151, 158201, 178501, 181501, 193751, 219451, 232901, 257401, 275651, 290701, 318001, 322001
OFFSET
1,1
COMMENTS
Primes of the form (25*k^2 + 25*k + 2)/2.
Numbers k such that (25*k^2 + 25*k + 2)/2 is prime: 3, 4, 7, 12, 15, 19, 28, 31, 36, 39, 47, 48, 51, 55, 56, 60, 67, 71, 72, 80, 83, 87, 91, ...
MAPLE
select(isprime, [seq((25*k^2+25*k+2)/2, k=1..200)]); # Robert Israel, Sep 01 2016
MATHEMATICA
Intersection[Table[(25 k^2 + 25 k + 2)/2, {k, 0, 1000}], Prime[Range[28000]]]
PROG
(PARI) lista(nn) = for(n=1, nn, if(isprime(p=(25*n^2 + 25*n + 2)/2), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016
CROSSREFS
Cf. centered k-gonal primes listed in A276261.
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 26 2016
STATUS
approved

Search completed in 0.014 seconds