Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a173307 -id:a173307
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 25*n*(n + 1)/2 + 1.
+10
8
1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
OFFSET
0,2
COMMENTS
Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1)-(-1)^k+1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).
FORMULA
G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
MATHEMATICA
Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
25*Accumulate[Range[0, 50]]+1 (* or *) LinearRecurrence[{3, -3, 1}, {1, 26, 76}, 50] (* Harvey P. Dale, Jan 29 2023 *)
PROG
(PARI) vector(50, n, n--; 25*n*(n+1)/2+1)
(Sage) [25*n*(n+1)/2+1 for n in (0..50)]
(Magma) [25*n*(n+1)/2+1: n in [0..50]];
CROSSREFS
Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1)-(-1)^k+1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Sep 15 2015
STATUS
approved

Search completed in 0.007 seconds