Nothing Special   »   [go: up one dir, main page]

login
Search: a035324 -id:a035324
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = binomial(2*n+1, n+1): number of ways to put n+1 indistinguishable balls into n+1 distinguishable boxes = number of (n+1)-st degree monomials in n+1 variables = number of monotone maps from 1..n+1 to 1..n+1.
(Formerly M2848 N1144)
+10
412
1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, 352716, 1352078, 5200300, 20058300, 77558760, 300540195, 1166803110, 4537567650, 17672631900, 68923264410, 269128937220, 1052049481860, 4116715363800, 16123801841550, 63205303218876, 247959266474052
OFFSET
0,2
COMMENTS
To show for example that C(2n+1, n+1) is the number of monotone maps from 1..n + 1 to 1..n + 1, notice that we can describe such a map by a nondecreasing sequence of length n + 1 with entries from 1 to n + 1. The number k of increases in this sequence is anywhere from 0 to n. We can specify these increases by throwing k balls into n+1 boxes, so the total is Sum_{k = 0..n} C((n+1) + k - 1, k) = C(2*n+1, n+1).
Also number of ordered partitions (or compositions) of n + 1 into n + 1 parts. E.g., a(2) = 10: 003, 030, 300, 012, 021, 102, 120, 210, 201, 111. - Mambetov Bektur (bektur1987(AT)mail.ru), Apr 17 2003
Also number of walks of length n on square lattice, starting at origin, staying in first and second quadrants. - David W. Wilson, May 05 2001. (E.g., for n = 2 there are 10 walks, all starting at 0, 0: 0, 1 -> 0, 0; 0, 1 -> 1, 1; 0, 1 -> 0, 2; 1, 0 -> 0, 0; 1, 0 -> 1, 1; 1, 0 -> 2, 0; 1, 0 -> 1, -1; -1, 0 -> 0, 0; -1, 0 -> -1, 1; -1, 0-> -2, 0.)
Also total number of leaves in all ordered trees with n + 1 edges.
Also number of digitally balanced numbers [A031443] from 2^(2*n+1) to 2^(2*n+2). - Naohiro Nomoto, Apr 07 2001
Also number of ordered trees with 2*n + 2 edges having root of even degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of paths of length 2*d(G) connecting two neighboring nodes in optimal chordal graph of degree 4, G(2*d(G)^2 + 2*d(G) + 1, 2d(G) + 1), where d(G) = diameter of graph G. - S. Bujnowski (slawb(AT)atr.bydgoszcz.pl), Feb 11 2002
Define an array by m(1, j) = 1, m(i, 1) = i, m(i, j) = m(i, j-1) + m(i-1, j); then a(n) = m(n, n), diagonal of A165257 - Benoit Cloitre, May 07 2002
Also the numerator of the constant term in the expansion of cos^(2*n)(x) or sin^(2*n)(x) when the denominator is 2^(2*n-1). - Robert G. Wilson v
Consider the expansion of cos^n(x) as a linear combination of cosines of multiple angles. If n is odd, then the expansion is a combination of a*cos((2*k-1)*x)/2^(n-1) for all 2*k - 1 <= n. If n is even, then the expansion is a combination of a*cos(2k*x)/2^(n-1) terms plus a constant. "The constant term, [a(n)/2^(2n-1)], is due to the fact that [cos^2n(x)] is never negative, i.e., electrical engineers would say the average or 'dc value' of [cos^(2*n)(x)] is [a(n)/2^(2*n-1)]. The dc value of [cos^(2*n-1)(x)] on the other hand, is zero because it is symmetrical about the horizontal axis, i.e., it is negative and positive equally." Nahin[62] - Robert G. Wilson v, Aug 01 2002
Also number of times a fixed Dyck word of length 2*k occurs in all Dyck words of length 2*n + 2*k. Example: if the fixed Dyck word is xyxy (k = 2), then it occurs a(1) = 3 times in the 5 Dyck words of length 6 (n = 1): (xy[xy)xy], xyxxyy, xxyyxy, x(xyxy)y, xxxyyy (placed between parentheses). - Emeric Deutsch, Jan 02 2003
a(n+1) is the determinant of the n X n matrix m(i, j) = binomial(2*n-i, j). - Benoit Cloitre, Aug 26 2003
a(n-1) = (2*n)!/(2*n!*n!), formula in [Davenport] used by Gauss for the special case prime p = 4*n + 1: x = a(n-1) mod p and y = x*(2n)! mod p are solutions of p = x^2 + y^2. - Frank Ellermann. Example: For prime 29 = 4*7 + 1 use a(7-1) = 1716 = (2*7)!/(2*7!*7!), 5 = 1716 mod 29 and 2 = 5*(2*7)! mod 29, then 29 = 5*5 + 2*2.
The number of compositions of 2*n, say c_1 + c_2 + ... + c_k = 2n, satisfy that Sum_{i = 1..j} c_i < 2*j for all j = 1..k, or equivalently, the number of subsets, say S, of [2*n-1] = {1, 2, ..., 2*n-1} with at least n elements such that if 2k is in S, then there must be at least k elements in S smaller than 2k. E.g., a(2) = 3 because we can write 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1. - Ricky X. F. Chen (ricky_chen(AT)mail.nankai.edu.cn), Jul 30 2006
The number of walks of length 2*n + 1 on an infinite linear lattice that begin at the origin and end at node (1). Also the number of paths on a square lattice from the origin to (n+1, n) that use steps (1,0) and (0,1). Also number of binary numbers of length 2*n + 1 with n + 1 ones and n zeros. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
If Y is a 3-subset of an 2*n-set X then, for n >= 3, a(n-1) is the number of n-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
Also the number of rankings (preferential arrangements) of n unlabeled elements onto n levels when empty levels are allowed. - Thomas Wieder, May 24 2008
Also the Catalan transform of A000225 shifted one index, i.e., dropping A000225(0). - R. J. Mathar, Nov 11 2008
With offset 1. The number of solutions in nonnegative integers to X1 + X2 + ... + Xn = n. The number of terms in the expansion of (X1 + X2 + ... + Xn)^n. The coefficient of x^n in the expansion of (1 + x + x^2 + ...)^n. The number of distinct image sets of all functions taking [n] into [n]. - Geoffrey Critzer, Feb 22 2009
The Hankel transform of the aerated sequence 1, 0, 3, 0, 10, 0, ... is 1, 3, 3, 5, 5, 7, 7, ... (A109613(n+1)). - Paul Barry, Apr 21 2009
Also the number of distinct network topologies for a network of n items with 1 to n - 1 unidirectional connections to other objects in the network. - Anthony Bachler, May 05 2010
Equals INVERT transform of the Catalan numbers starting with offset 1. E.g.: a(3) = 35 = (1, 2, 5) dot (10, 3, 1) + 14 = 21 + 14 = 35. - Gary W. Adamson, May 15 2009
The integral of 1/(1+x^2)^(n+1) is given by a(n)/2^(2*n - 1) * (x/(1 + x^2)^n*P(x) + arctan(x)), where P(x) is a monic polynomial of degree 2*n - 2 with rational coefficients. - Christiaan van de Woestijne, Jan 25 2011
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps at level 0 come in 2 colors and there are no (2,0)-steps at a higher level. Example: a(2) = 10 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 2^2 = 4 paths of shape HH, 2 paths of shape HUD, 2 paths of shape UDH, and 1 path of each of the shapes UDUD and UUDD. - Emeric Deutsch, May 02 2011
a(n) is the number of Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=35 because, denoting U = (1,1), H = (1,0), and D = (1,-1), we have 3^3 = 27 paths of shape HHH, 3 paths of shape HUD, 3 paths of shape UDH, and 2 paths of shape UHD. - Emeric Deutsch, May 02 2011
Also number of digitally balanced numbers having length 2*(n + 1) in binary representation: a(n) = #{m: A070939(A031443(m)) = 2*(n + 1)}. - Reinhard Zumkeller, Jun 08 2011
a(n) equals 2^(2*n + 3) times the coefficient of Pi in 2F1([1/2, n+2]; [3/2]; -1). - John M. Campbell, Jul 17 2011
For positive n, a(n) equals 4^(n+2) times the coefficient of Pi^2 in Integral_{x = 0..Pi/2} x sin^(2*n + 2)x. - John M. Campbell, Jul 19 2011 [Apparently, the contributor means Integral_{x = 0..Pi/2} x * (sin(x))^(2*n + 2).]
a(n-1) = C(2*n, n)/2 is the number of ways to assign 2*n people into 2 (unlabeled) groups of size n. - Dennis P. Walsh, Nov 09 2011
Equals row sums of triangle A205945. - Gary W. Adamson, Feb 01 2012
a(n-1) gives the number of n-regular sequences defined by Erdős and Gallai in 1960 in connection with the degree sequences of simple graphs. - Matuszka Tamás, Mar 06 2013
a(n) is the sum of falling diagonals of squares in the comment in A085812 (equivalent to the Cloitre formula of Aug 2002). - John Molokach, Sep 26 2013
For n > 0: largest terms of Zigzag matrices as defined in A088961. - Reinhard Zumkeller, Oct 25 2013
Also the number of different possible win/loss round sequences (from the perspective of the eventual winner) in a "best of 2*n + 1" two-player game. For example, a(2) = 10 means there are 10 different win/loss sequences in a "best of 5" game (like a tennis match in which the first player to win 3 sets, out of a maximum of 5, wins the match); the 10 sequences are WWW, WWLW, WWLLW, WLWW, WLWLW, WLLWW, LWWW, LWWLW, LWLWW, LLWWW. See also A072600. - Philippe Beaudoin, May 14 2014; corrected by Jon E. Schoenfield, Nov 23 2014
When adding 1 to the beginning of the sequence: Convolving a(n)/2^n with itself equals 2^(n+1). For example, when n = 4: convolving {1, 1/1, 3/2, 10/4, 35/8, 126/16} with itself is 32 = 2^5. - Bob Selcoe, Jul 16 2014
From Tom Copeland, Nov 09 2014: (Start)
The shifted array belongs to a family of arrays associated to the Catalan A000108 (t = 1), and Riordan, or Motzkin sums A005043 (t = 0), with the o.g.f. [1 - sqrt(1 - 4x/(1 + (1 - t)x))]/2 and inverse x*(1 - x)/[1 + (t - 1)*x*(1 - x)]. See A091867 for more info on this family. Here is t = -3 (mod signs in the results).
Let C(x) = [1 - sqrt(1-4x)]/2, an o.g.f. for the Catalan numbers A000108, with inverse Cinv(x) = x*(1-x) and P(x,t) = x/(1 + t*x) with inverse P(x, -t).
O.g.f: G(x) = [-1 + sqrt(1 + 4*x/(1 - 4*x))]/2 = -C[P(-x, 4)].
Inverse o.g.f: Ginv(x) = x*(1 + x)/(1 + 4*x*(1 + x)) = -P(Cinv(-x), -4) (shifted signed A001792). A088218(x) = 1 + G(x).
Equals A001813/2 omitting the leading 1 there. (End)
Placing n distinguishable balls into n indistinguishable boxes gives A000110(n) (the number of set partitions). - N. J. A. Sloane, Jun 19 2015
The sequence is the INVERTi transform of A049027: (1, 4, 17, 74, 326, ...). - Gary W. Adamson, Jun 23 2015
a(n) is the number of compositions of 2*n + 2 such that the sum of the elements at odd positions is equal to the sum of the elements at even positions. a(2) = 10 because there are 10 such compositions of 6: (3, 3), (1, 3, 2), (2, 3, 1), (1, 1, 2, 2), (1, 2, 2, 1), (2, 2, 1, 1), (2, 1, 1, 2), (1, 2, 1, 1, 1), (1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 1). - Ran Pan, Oct 08 2015
a(n-1) is also the Schur function of the partition (n) of n evaluated at x_1 = x_2 = ... = x_n = 1, i.e., the number of semistandard Young tableaux of shape (n) (weakly increasing rows with n boxes with numbers from {1, 2, ..., n}). - Wolfdieter Lang, Oct 11 2015
Also the number of ordered (rooted planar) forests with a total of n+1 edges and no trivial trees. - Nachum Dershowitz, Mar 30 2016
a(n) is the number of sets (i1,...in) of length n so that n >= i1 >= i2 >= ...>= in >= 1. For instance, n=3 as there are only 10 such sets (3,3,3) (3,3,2) (3,3,1) (3,2,2) (3,2,1) (3,1,1) (2,2,2) (2,2,1) (2,1,1) (1,1,1,) 3,2,1 is each used 10 times respectively. - Anton Zakharov, Jul 04 2016
The repeated middle term in the odd rows of Pascal's triangle, or half the central binomial coefficient in the even rows of Pascal's triangle, n >= 2. - Enrique Navarrete, Feb 12 2018
a(n) is the number of walks of length 2n+1 from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n+1 from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Total number of nodes summed over all Dyck paths of semilength n. - Alois P. Heinz, Mar 08 2020
a(n-1) is the determinant of the n X n matrix m(i, j) = binomial(n+i-1, j). - Fabio Visonà, May 21 2022
Let X_i be iid standard Gaussian random variable N(0,1), and S_n be the partial sum S_n = X_1+...+X_n. Then P(S_1>0,S_2>0,...,S_n>0) = a(n+1)/2^(2n-1) = a(n+1) / A004171(n+1). For example, P(S_1>0) = 1/2, P(S_1>0,S_2>0) = 3/8, P(S_1>0,S_2>0,S_3>0) = 5/16, etc. This probability is also equal to the volume of the region x_1 > 0, x_2 > -x_1, x_3 > -(x_1+x_2), ..., x_n > -(x_1+x_2+...+x_(n-1)) in the hypercube [-1/2, 1/2]^n. This also holds for the Cauchy distribution and other stable distributions with mean 0, skew 0 and scale 1. - Xiaohan Zhang, Nov 01 2022
a(n) is the number of parking functions of size n+1 avoiding the patterns 132, 213, and 321. - Lara Pudwell, Apr 10 2023
Number of vectors in (Z_>=0)^(n+1) such that the sum of the components is n+1. binomial(2*n-1, n) provides this property for n. - Michael Richard, Jun 12 2023
Also number of discrete negations on the finite chain L_n={0,1,...,n-1,n}, i.e., monotone decreasing unary operators such that N(0)=n and N(n)=0. - Marc Munar, Oct 10 2023
a(n) is the number of Dyck paths of semilength n+1 having one of its peaks marked. - Juan B. Gil, Jan 03 2024
a(n) is the dimension of the (n+1)-st symmetric power of an (n+1)-dimensional vector space. - Mehmet A. Ates, Feb 15 2024
a(n) is the independence number of the twisted odd graph O^(sigma)_(n+2). - Miquel A. Fiol, Aug 26 2024
a(n) is the number of non-descending sequences with length n and the last number is less or equal to n. a(n) is also the number of integer partitions (of any positive integer) with length n and largest part is less or equal to n. - Zlatko Damijanic, Dec 06 2024
REFERENCES
H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th ed., 1999, ch. V.3 (p. 122).
A. Frosini, R. Pinzani, and S. Rinaldi, About half the middle binomial coefficient, Pure Math. Appl., 11 (2000), 497-508.
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 62.
L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Matuszka Tamás, Table of n, a(n) for n = 0..1200 (first 100 terms from T. D. Noe)
J. Abate and W. Whitt, Brownian Motion and the Generalized Catalan Numbers, J. Int. Seq. 14 (2011), #11.2.6, theorem 4.
Ayomikun Adeniran and Lara Pudwell, Pattern avoidance in parking functions, Enumer. Comb. Appl. 3:3 (2023), Article S2R17.
José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
Martin Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
Elena Barcucci, Andrea Frosini, and Simone Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005), 62-78.
Elena Barcucci, Antonio Bernini, and Renzo Pinzani, Exhaustive generation of positive lattice paths, Semantic Sensor Networks Workshop 2018, CEUR Workshop Proceedings (2018), Vol. 2113.
Jean-Luc Baril, David Bevan, and Sergey Kirgizov, Bijections between directed animals, multisets and Grand-Dyck paths, arXiv:1906.11870 [math.CO], 2019.
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 5.
Jean-Luc Baril and Nathanaël Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 17.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), Article 06.2.4.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Antonio Bernini, Filippo Disanto, Renzo Pinzani, and Simone Rinaldi, Permutations defining convex permutominoes, J. Int. Seq. 10 (2007), #07.9.7.
Ciprian Borcea and Ileana Streinu, On the number of embeddings of minimally rigid graphs, arXiv:math/0207126 [math.MG], 2002.
Mireille Bousquet-Mélou, New enumerative results on two-dimensional directed animals, Discr. Math., 180 (1998), 73-106. See Eq. (1).
M. Bousquet-Mélou and A. Rechnitzer, Lattice animals and heaps of dimers.
Jean-Paul Bultel and Samuele Giraudo, Combinatorial Hopf algebras from PROs, arXiv:1406.6903 [math.CO], 2014. [DOI]
Libor Caha and Daniel Nagaj, The pair-flip model: a very entangled translationally invariant spin chain, arXiv:1805.07168 [quant-ph], 2018.
David Callan, A Combinatorial Interpretation for a Super-Catalan Recurrence, Journal of Integer Sequences, 8 (2005), Article 05.1.8.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs., 3 (2000), #00.1.5.
Gi-Sang Cheon, Hana Kim, and Louis W. Shapiro, Mutation effects in ordered trees, arXiv:1410.1249 [math.CO], 2014.
Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, 18 (2015), Article 15.5.8.
Nachum Dershowitz, 1700 Forests, arXiv:1608.08740 [cs.DM], 2016.
Leonard E. Dickson, On the Inscription of Regular Polygons, Annals of Mathematics, Vol. 9, No. 1/6 (1894 - 1895), pp. 73-84.
Leonard E. Dickson, Problem 44, The American Mathematical Monthly, Vol. 2, No. 7/8 (Jul. - Aug., 1895), pp. 229-230.
G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
Miquel A. Fiol, E. Garriga, and J. L. A. Yebra, On twisted odd graphs, Combin. Probab. Comput. 9 (2000), 227-240.
Rigoberto Flórez, Leandro Junes, and José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, Journal of Integer Sequences, 21 (2018), Article 18.1.2.
Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
Juan B. Gil, Emma G. Hoover, and Jessica A. Shearer, Bijections between colored compositions, Dyck paths, and polygon partitions, arXiv:2403.04575 [math.CO], 2024. See p. 4.
N. Gromov and P. Vieira, Tailoring Three-Point Functions and Integrability IV. Theta-morphism, arXiv:1205.5288 [hep-th], 2012. - From N. J. A. Sloane, Oct 23 2012
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, 3 (2000), Article #00.1.6.
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
A. Ivanyi, L. Lucz, T. Matuszka, and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapientiae, Informatica, 4(2) (2012) 260-288.
Christian Krattenthaler and Daniel Yaqubi, Some determinants of path generating functions, II, Adv. Appl. Math. 101 (2018), 232-265.
Dmitry Kruchinin, Superposition's properties of logarithmic generating functions, arXiv:1109.1683 [math.CO], 2011-2015.
Markus Kuba and Alois Panholzer, Stirling permutations containing a single pattern of length three, Australasian Journal of Combinatorics 74(2) (2019), 216-239.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., 3 (2000), #00.2.4.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
H. Li and T. MacHenry, Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences, J. Int. Seq. 16 (2013) #13.3.5, example 40.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
T. Mansour and M. Shattuck, A statistic on n-color compositions and related sequences, Proc. Indian Acad. Sci. (Math. Sci.) 124(2) (2014), pp. 127-140.
Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, 21 (2018), Article 18.1.3.
Hanna Mularczyk, Lattice Paths and Pattern-Avoiding Uniquely Sorted Permutations, arXiv:1908.04025 [math.CO], 2019.
M. Munar, S. Massanet, and D. Ruiz-Aguilera, On the cardinality of some families of discrete connectives, Information Sciences, Volume 621, 2023, 708-728.
A. Nkwanta, Riordan matrices and higher-dimensional lattice walks, J. Stat. Plann. Infer. 140 (2010), 2321-2334.
Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, 15 (2012), Article 12.3.3. - From N. J. A. Sloane, Sep 16 2012
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., 4 (2001), #01.2.1.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
Louis Shapiro, Problem 10753 Amer. Math. Monthly, 106(8) (1999), p. 777.
Louis Shapiro et al., Leaves of Ordered Trees: 10753, Amer. Math. Monthly, 108(9) (Nov., 2001), 873-874.
Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See pp. 96, 98-99.
Eric Weisstein's World of Mathematics, Binomial Coefficient.
Eric Weisstein's World of Mathematics, Odd Graph.
FORMULA
a(n-1) = binomial(2*n, n)/2 = A000984(n)/2 = (2*n)!/(2*n!*n!).
D-finite with recurrence: a(0) = 1, a(n) = 2*(2*n+1)*a(n-1)/(n+1) for n > 0.
G.f.: (1/sqrt(1 - 4*x) - 1)/(2*x).
L.g.f.: log((1 - sqrt(1 - 4*x))/(2*x)) = Sum_{n >= 0} a(n)*x^(n+1)/(n+1). - Vladimir Kruchinin, Aug 10 2010
G.f.: 2F1([1, 3/2]; [2]; 4*x). - Paul Barry, Jan 23 2009
G.f.: 1/(1 - 2*x - x/(1 - x/(1 - x/(1 - x/(1 - ... (continued fraction). - Paul Barry, May 06 2009
G.f.: c(x)^2/(1 - x*c(x)^2), c(x) the g.f. of A000108. - Paul Barry, Sep 07 2009
O.g.f.: c(x)/sqrt(1 - 4*x) = (2 - c(x))/(1 - 4*x), with c(x) the o.g.f. of A000108. Added second formula. - Wolfdieter Lang, Sep 02 2012
Convolution of A000108 (Catalan) and A000984 (central binomial): Sum_{k=0..n} C(k)*binomial(2*(n-k), n-k), C(k) Catalan. - Wolfdieter Lang, Dec 11 1999
a(n) = Sum_{k=0..n} C(n+k, k). - Benoit Cloitre, Aug 20 2002
a(n) = Sum_{k=0..n} C(n, k)*C(n+1, k+1). - Benoit Cloitre, Oct 19 2002
a(n) = Sum_{k = 0..n+1} binomial(2*n+2, k)*cos((n - k + 1)*Pi). - Paul Barry, Nov 02 2004
a(n) = 4^n*binomial(n+1/2, n)/(n+1). - Paul Barry, May 10 2005
E.g.f.: Sum_{n >= 0} a(n)*x^(2*n + 1)/(2*n + 1)! = BesselI(1, 2*x). - Michael Somos, Jun 22 2005
E.g.f. in Maple notation: exp(2*x)*(BesselI(0, 2*x) + BesselI(1, 2*x)). Integral representation as n-th moment of a positive function on [0, 4]: a(n) = Integral_{x = 0..4} x^n * (x/(4 - x))^(1/2)/(2*Pi) dx, n >= 0. This representation is unique. - Karol A. Penson, Oct 11 2001
Narayana transform of [1, 2, 3, ...]. Let M = the Narayana triangle of A001263 as an infinite lower triangular matrix and V = the Vector [1, 2, 3, ...]. Then A001700 = M * V. - Gary W. Adamson, Apr 25 2006
a(n) = A122366(n,n). - Reinhard Zumkeller, Aug 30 2006
a(n) = C(2*n, n) + C(2*n, n-1) = A000984(n) + A001791(n). - Zerinvary Lajos, Jan 23 2007
a(n-1) = (n+1)*(n+2)*...*(2*n-1)/(n-1)! (product of n-1 consecutive integers, divided by (n-1)!). - Jonathan Vos Post, Apr 09 2007; [Corrected and shortened by Giovanni Ciriani, Mar 26 2019]
a(n-1) = (2*n - 1)!/(n!*(n - 1)!). - William A. Tedeschi, Feb 27 2008
a(n) = (2*n + 1)*A000108(n). - Paul Barry, Aug 21 2007
Binomial transform of A005773 starting (1, 2, 5, 13, 35, 96, ...) and double binomial transform of A001405. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A132813. - Gary W. Adamson, Sep 01 2007
Row sums of triangle A134285. - Gary W. Adamson, Nov 19 2007
a(n) = 2*A000984(n) - A000108(n), that is, a(n) = 2*C(2*n, n) - n-th Catalan number. - Joseph Abate, Jun 11 2010
Conjectured: 4^n GaussHypergeometric(1/2,-n; 2; 1) -- Solution for the path which stays in the first and second quadrant. - Benjamin Phillabaum, Feb 20 2011
a(n)= Sum_{k=0..n} A038231(n,k) * (-1)^k * A000108(k). - Philippe Deléham, Nov 27 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1] = -1, A[i,j] = Catalan(j-i), (i <= j), and A[i,j] = 0, otherwise. Then, for n >= 1, a(n) = (-1)^n * charpoly(A,-2). - Milan Janjic, Jul 08 2010
a(n) is the upper left term of M^(n+1), where M is the infinite matrix in which a column of (1,2,3,...) is prepended to an infinite lower triangular matrix of all 1's and the rest zeros, as follows:
1, 1, 0, 0, 0, ...
2, 1, 1, 0, 0, ...
3, 1, 1, 1, 0, ...
4, 1, 1, 1, 1, ...
...
Alternatively, a(n) is the upper left term of M^n where M is the infinite matrix:
3, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
...
- Gary W. Adamson, Jul 14 2011
a(n) = (n + 1)*hypergeom([-n, -n], [2], 1). - Peter Luschny, Oct 24 2011
a(n) = Pochhammer(n+1, n+1)/(n+1)!. - Peter Luschny, Nov 07 2011
E.g.f.: 1 + 6*x/(U(0) - 6*x); U(k) = k^2 + (4*x + 3)*k + 6*x + 2 - 2*x*(k + 1)*(k + 2)*(2*k + 5)/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2011
a(n) = 2*A000984(n) - A000108(n). [Abate & Whitt]
a(n) = 2^(2*n+1)*binomial(n+1/2, -1/2). - Peter Luschny, May 06 2014
For n > 1: a(n-1) = A166454(2*n, n), central terms in A166454. - Reinhard Zumkeller, Mar 04 2015
a(n) = 2*4^n*Gamma(3/2 + n)/(sqrt(Pi)*Gamma(2+n)). - Peter Luschny, Dec 14 2015
a(n) ~ 2*4^n*(1 - (5/8)/n + (73/128)/n^2 - (575/1024)/n^3 + (18459/32768)/n^4)/sqrt(n*Pi). - Peter Luschny, Dec 16 2015
a(n) = (-1)^(n)*B(n, n+1, -n-1)/n!, where B(n,a,x) is a generalized Bernoulli polynomial. - Vladimir Kruchinin, Apr 06 2016
a(n) = Gamma(2 + 2*n)/(n!*Gamma(2 + n)). Andres Cicuttin, Apr 06 2016
a(n) = (n + (n + 1))!/(Gamma(n)*Gamma(1 + n)*A002378(n)), for n > 0. Andres Cicuttin, Apr 07 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
Sum_{n >= 0} 1/a(n) = 2*(9 + 2*sqrt(3)*Pi)/27 = A248179.
Sum_{n >= 0} (-1)^n/a(n) = 2*(5 + 4*sqrt(5)*arcsinh(1/2))/25 = 2*(5*A145433 - 1).
Sum_{n >= 0} (-1)^n*a(n)/n! = BesselI(2,2)*exp(-2) = A229020*A092553. (End)
Conjecture: a(n) = Sum_{k=2^n..2^(n+1)-1} A178244(k). - Mikhail Kurkov, Feb 20 2021
a(n-1) = 1 + (1/n)*Sum_{t=1..n/2} (2*cos((2*t-1)*Pi/(2*n)))^(2*n). - Greg Dresden, Oct 11 2022
a(n) = Product_{1 <= i <= j <= n} (i + j + 1)/(i + j - 1). Cf. A006013. - Peter Bala, Feb 21 2023
Sum_{n >= 0} a(n)*x^(n+1)/(n+1) = x + 3*x^2/2 + 10*x^3/3 + 35*x^4/4 + ... = the series reversion of exp(-x)*(1 - exp(-x)). - Peter Bala, Sep 06 2023
EXAMPLE
There are a(2)=10 ways to put 3 indistinguishable balls into 3 distinguishable boxes, namely, (OOO)()(), ()(OOO)(), ()()(OOO), (OO)(O)(), (OO)()(O), (O)(OO)(), ()(OO)(O), (O)()(OO), ()(O)(OO), and (O)(O)(O). - Dennis P. Walsh, Apr 11 2012
a(2) = 10: Semistandard Young tableaux for partition (3) of 3 (the indeterminates x_i, i = 1, 2, 3 are omitted and only their indices are given): 111, 112, 113, 122, 123, 133, 222, 223, 233, 333. - Wolfdieter Lang, Oct 11 2015
MAPLE
A001700 := n -> binomial(2*n+1, n+1); seq(A001700(n), n=0..20);
A001700List := proc(m) local A, P, n; A := [1]; P := [1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
A := [op(A), P[-1]] od; A end: A001700List(27); # Peter Luschny, Mar 24 2022
MATHEMATICA
Table[ Binomial[2n + 1, n + 1], {n, 0, 23}]
CoefficientList[ Series[2/((Sqrt[1 - 4 x] + 1)*Sqrt[1 - 4 x]), {x, 0, 22}], x] (* Robert G. Wilson v, Aug 08 2011 *)
PROG
(Sage) [rising_factorial(n+1, n+1)/factorial(n+1) for n in (0..22)] # Peter Luschny, Nov 07 2011
(PARI) a(n)=binomial(2*n+1, n+1)
(PARI) z='z+O('z^50); Vec((1/sqrt(1-4*z)-1)/(2*z)) \\ Altug Alkan, Oct 11 2015
(Haskell)
a001700 n = a007318 (2*n+1) (n+1) -- Reinhard Zumkeller, Oct 25 2013
(Magma) [Binomial(2*n, n)/2: n in [1..40]]; // Vincenzo Librandi, Nov 10 2014
(Python)
from __future__ import division
A001700_list, b = [], 1
for n in range(10**3):
A001700_list.append(b)
b = b*(4*n+6)//(n+2) # Chai Wah Wu, Jan 26 2016
(Maxima)
B(n, a, x):=coeff(taylor(exp(x*t)*(t/(exp(t)-1))^a, t, 0, 20), t, n)*n!;
makelist((-1)^(n)*B(n, n+1, -n-1)/n!, n, 0, 10); /* Vladimir Kruchinin, Apr 06 2016 */
(GAP) List([0..30], n->Binomial(2*n+1, n+1)); # Muniru A Asiru, Feb 26 2019
CROSSREFS
Equals A000984(n+1)/2.
a(n) = (2*n+1)*Catalan(n) [A000108] = A035324(n+1, 1) (first column of triangle).
Row sums of triangles A028364, A050166, A039598.
Bisections: a(2*k) = A002458(k), a(2*k+1) = A001448(k+1)/2, k >= 0.
Other versions of the same sequence: A088218, A110556, A138364.
Diagonals 1 and 2 of triangle A100257.
Second row of array A102539.
Column of array A073165.
Row sums of A103371. - Susanne Wienand, Oct 22 2011
Cf. A002054: C(2*n+1, n-1). - Bruno Berselli, Jan 20 2014
KEYWORD
easy,nonn,nice,core,changed
EXTENSIONS
Name corrected by Paul S. Coombes, Jan 11 2012
Name corrected by Robert Tanniru, Feb 01 2014
STATUS
approved
Triangle formed from odd-numbered columns of triangle of expansions of powers of x in terms of Chebyshev polynomials U_n(x). Sometimes called Catalan's triangle.
+10
68
1, 2, 1, 5, 4, 1, 14, 14, 6, 1, 42, 48, 27, 8, 1, 132, 165, 110, 44, 10, 1, 429, 572, 429, 208, 65, 12, 1, 1430, 2002, 1638, 910, 350, 90, 14, 1, 4862, 7072, 6188, 3808, 1700, 544, 119, 16, 1, 16796, 25194, 23256, 15504, 7752, 2907, 798, 152, 18, 1
OFFSET
0,2
COMMENTS
T(n,k) is the number of leaves at level k+1 in all ordered trees with n+1 edges. - Emeric Deutsch, Jan 15 2005
Riordan array ((1-2x-sqrt(1-4x))/(2x^2),(1-2x-sqrt(1-4x))/(2x)). Inverse array is A053122. - Paul Barry, Mar 17 2005
T(n,k) is the number of walks of n steps, each in direction N, S, W, or E, starting at the origin, remaining in the upper half-plane and ending at height k (see the R. K. Guy reference, p. 5). Example: T(3,2)=6 because we have ENN, WNN, NEN, NWN, NNE and NNW. - Emeric Deutsch, Apr 15 2005
Triangle T(n,k), 0<=k<=n, read by rows given by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + T(n-1,k+1) for k>=1. - Philippe Deléham, Mar 30 2007
Number of (2n+1)-step walks from (0,0) to (2n+1,2k+1) and consisting of steps u=(1,1) and d=(1,-1) in which the path stays in the nonnegative quadrant. Examples: T(2,0)=5 because we have uuudd, uudud, uuddu, uduud, ududu; T(2,1)=4 because we have uuuud, uuudu, uuduu, uduuu; T(2,2)=1 because we have uuuuu. - Philippe Deléham, Apr 16 2007, Apr 18 2007
Triangle read by rows: T(n,k)=number of lattice paths from (0,0) to (n,k) that do not go below the line y=0 and consist of steps U=(1,1), D=(1,-1) and two types of steps H=(1,0); example: T(3,1)=14 because we have UDU, UUD, 4 HHU paths, 4 HUH paths and 4 UHH paths. - Philippe Deléham, Sep 25 2007
This triangle belongs to the family of triangles defined by T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0) -> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
With offset [1,1] this is the (ordinary) convolution triangle a(n,m) with o.g.f. of column m given by (c(x)-1)^m, where c(x) is the o.g.f. for Catalan numbers A000108. See the Riordan comment by Paul Barry.
T(n, k) is also the number of order-preserving full transformations (of an n-chain) with exactly k fixed points. - Abdullahi Umar, Oct 02 2008
T(n,k)/2^(2n+1) = coefficients of the maximally flat lowpass digital differentiator of the order N=2n+3. - Pavel Holoborodko (pavel(AT)holoborodko.com), Dec 19 2008
The signed triangle S(n,k) := (-1)^(n-k)*T(n,k) provides the transformation matrix between f(n,l) := L(2*l)*5^n*F(2*l)^(2*n+1) (F=Fibonacci numbers A000045, L=Lucas numbers A000032) and F(4*l*(k+1)), k = 0, ..., n, for each l>=0: f(n,l) = Sum_{k=0..n} S(n,k)*F(4*l*(k+1)), n>=0, l>=0. Proof: the o.g.f. of the l.h.s., G(l;x) := Sum_{n>=0} f(n,l)*x^n = F(4*l)/(1 - 5*F(2*l)^2*x) is shown to match the o.g.f. of the r.h.s.: after an interchange of the n- and k-summation, the Riordan property of S = (C(x)/x,C(x)) (compare with the above comments by Paul Barry), with C(x) := 1 - c(-x), with the o.g.f. c(x) of A000108 (Catalan numbers), is used, to obtain, after an index shift, first Sum_{k>=0} F(4*l*(k))*GS(k;x), with the o.g.f of column k of triangle S which is GS(k;x) := Sum_{n>=k} S(n,k)*x^n = C(x)^(k+1)/x. The result is GF(l;C(x))/x with the o.g.f. GF(l,x) := Sum_{k>=0} F(4*l*k)*x^k = x*F(4*l)/(1-L(4*l)*x+x^2) (see a comment on A049670, and A028412). If one uses then the identity L(4*n) - 5*F(2*n)^2 = 2 (in Koshy's book [reference under A065563] this is No. 15, p. 88, attributed to Lucas, 1876), the proof that one recovers the o.g.f. of the l.h.s. from above boils down to a trivial identity on the Catalan o.g.f., namely 1/c^2(-x) = 1 + 2*x - (x*c(-x))^2. - Wolfdieter Lang, Aug 27 2012
O.g.f. for row polynomials R(x) := Sum_{k=0..n} a(n,k)*x^k:
((1+x) - C(z))/(x - (1+x)^2*z) with C the o.g.f. of A000108 (Catalan numbers). From Riordan ((C(x)-1)/x,C(x)-1), compare with a Paul Barry comment above. This coincides with the o.g.f. given by Emeric Deutsch in the formula section. - Wolfdieter Lang, Nov 13 2012
The A-sequence for this Riordan triangle is [1,2,1] and the Z-sequence is [2,1]. See a W. Lang link under A006232 with details and references. - Wolfdieter Lang, Nov 13 2012
From Wolfdieter Lang, Sep 20 2013: (Start)
T(n, k) = A053121(2*n+1, 2*k+1). T(n, k) appears in the formula for the (2*n+1)-th power of the algebraic number rho(N) := 2*cos(Pi/N) = R(N, 2) in terms of the even-indexed diagonal/side length ratios R(N, 2*(k+1)) = S(2*k+1, rho(N)) in the regular N-gon inscribed in the unit circle (length unit 1). S(n, x) are Chebyshev's S polynomials (see A049310): rho(N)^(2*n+1) = Sum_{k=0..n} T(n, k)*R(N, 2*(k+1)), n >= 0, identical in N >= 1. For a proof see the Sep 21 2013 comment under A053121. Note that this is the unreduced version if R(N, j) with j > delta(N), the degree of the algebraic number rho(N) (see A055034), appears. For the even powers of rho(n) see A039599. (End)
The tridiagonal Toeplitz production matrix P in the Example section corresponds to the unsigned Cartan matrix for the simple Lie algebra A_n as n tends to infinity (cf. Damianou ref. in A053122). - Tom Copeland, Dec 11 2015 (revised Dec 28 2015)
T(n,k) is the number of pairs of non-intersecting walks of n steps, each in direction N or E, starting at the origin, and such that the end points of the two paths are separated by a horizontal distance of k. See Shapiro 1976. - Peter Bala, Apr 12 2017
Also the convolution triangle of the Catalan numbers A000108. - Peter Luschny, Oct 07 2022
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 796.
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1.
M. Aigner, Enumeration via ballot numbers, Discrete Math., 308 (2008), 2544-2563.
Quang T. Bach and Jeffrey B. Remmel, Generating functions for descents over permutations which avoid sets of consecutive patterns, arXiv:1510.04319 [math.CO], 2015 (see p. 25).
Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
Paul Barry, Chebyshev moments and Riordan involutions, arXiv:1912.11845 [math.CO], 2019.
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 29.
Eduardo H. M. Brietzke, Generalization of an identity of Andrews, Fibonacci Quart. 44 (2006), no. 2, 166-171.
F. Cai, Q.-H. Hou, Y. Sun, and A. L. B. Yang, Combinatorial identities related to 2x2 submatrices of recursive matrices, arXiv:1808.05736 [math.CO], 2018. See Table 1.1.
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
Marc Chamberland, Factored matrices can generate combinatorial identities, Linear Algebra and its Applications, Volume 438, Issue 4, 15 Feb. 2013, pp. 1667-1677.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, arXiv:1601.05645 [math.CO], 2016.
Xi Chen, H. Liang, and Y. Wang, Total positivity of recursive matrices, Linear Algebra and its Applications, Volume 471, Apr 15 2015, Pages 383-393.
Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 7.
S. J. Cyvin, J. Brunvoll, E. Brendsdal, B. N. Cyvin, and E. K. Lloyd, Enumeration of polyene hydrocarbons: a complete mathematical solution, J. Chem. Inf. Comput. Sci., 35 (1995) 743-751. [Annotated scanned copy]
Paul Drube, Generalized Path Pairs and Fuss-Catalan Triangles, arXiv:2007.01892 [math.CO], 2020. See Figure 4 p. 8.
Shishuo Fu and Yaling Wang, Bijective recurrences concerning two Schröder triangles, arXiv:1908.03912 [math.CO], 2019.
R. K. Guy, Catwalks, sandsteps and Pascal pyramids, J. Integer Sequences, Vol. 3 (2000), Article #00.1.6.
T.-X. He and L. W. Shapiro, Fuss-Catalan matrices, their weighted sums, and stabilizer subgroups of the Riordan group, Lin. Alg. Applic. 532 (2017) 25-41, example page 32.
Peter M. Higgins, Combinatorial results for semigroups of order-preserving mappings, Math. Proc. Camb. Phil. Soc. 113 (1993), 281-296.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174. See (1.1).
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016 (see 2.4).
Asamoah Nkwanta and Earl R. Barnes, Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind, Journal of Integer Sequences, Article 12.3.3, 2012. - From N. J. A. Sloane, Sep 16 2012
A. Nkwanta and A. Tefera, Curious Relations and Identities Involving the Catalan Generating Function and Numbers, Journal of Integer Sequences, 16 (2013), #13.9.5.
L. W. Shapiro, W.-J. Woan, and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
L. W. Shapiro, A Catalan triangle, Discrete Math., 14, 83-90, 1976.
L. W. Shapiro, A Catalan triangle, Discrete Math. 14 (1976), no. 1, 83-90. [Annotated scanned copy]
Yidong Sun and Fei Ma, Minors of a Class of Riordan Arrays Related to Weighted Partial Motzkin Paths, arXiv preprint arXiv:1305.2015 [math.CO], 2013.
Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv preprint arXiv:1305.2017 [math.CO], 2013.
Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
Charles Zhao-Chen Wang and Yi Wang, Total positivity of Catalan triangle, Discrete Math. 338 (2015), no. 4, 566--568. MR3300743.
W.-J. Woan, L. Shapiro, and D. G. Rogers, The Catalan numbers, the Lebesgue integral and 4^{n-2}, Amer. Math. Monthly, 104 (1997), 926-931.
Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
FORMULA
Row n: C(2n, n-k) - C(2n, n-k-2).
a(n, k) = C(2n+1, n-k)*2*(k+1)/(n+k+2) = A050166(n, n-k) = a(n-1, k-1) + 2*a(n-1, k)+ a (n-1, k+1) [with a(0, 0) = 1 and a(n, k) = 0 if n<0 or n<k]. - Henry Bottomley, Sep 24 2001
From Philippe Deléham, Feb 14 2004: (Start)
T(n, 0) = A000108(n+1), T(n, k) = 0 if n<k; for k>0, T(n, k) = Sum_{j=1..n} T(n-j, k-1)*A000108(j).
G.f. for column k: Sum_{n>=0} T(n, k)*x^n = x^k*C(x)^(2*k+2) where C(x) = Sum_{n>=0} A000108(n)*x^n is g.f. for Catalan numbers, A000108.
Sum_{k>=0} T(m, k)*T(n, k) = A000108(m+n+1). (End)
T(n, k) = A009766(n+k+1, n-k) = A033184(n+k+2, 2k+2). - Philippe Deléham, Feb 14 2004
Sum_{j>=0} T(k, j)*A039599(n-k, j) = A028364(n, k). - Philippe Deléham, Mar 04 2004
Antidiagonal Sum_{k=0..n} T(n-k, k) = A000957(n+3). - Gerald McGarvey, Jun 05 2005
The triangle may also be generated from M^n * [1,0,0,0,...], where M = an infinite tridiagonal matrix with 1's in the super- and subdiagonals and [2,2,2,...] in the main diagonal. - Gary W. Adamson, Dec 17 2006
G.f.: G(t,x) = C^2/(1-txC^2), where C = (1-sqrt(1-4x))/(2x) is the Catalan function. From here G(-1,x)=C, i.e., the alternating row sums are the Catalan numbers (A000108). - Emeric Deutsch, Jan 20 2007
Sum_{k=0..n} T(n,k)*x^k = A000957(n+1), A000108(n), A000108(n+1), A001700(n), A049027(n+1), A076025(n+1), A076026(n+1) for x=-2,-1,0,1,2,3,4 respectively (see square array in A067345). - Philippe Deléham, Mar 21 2007, Nov 04 2011
Sum_{k=0..n} T(n,k)*(k+1) = 4^n. - Philippe Deléham, Mar 30 2007
Sum_{j>=0} T(n,j)*binomial(j,k) = A035324(n,k), A035324 with offset 0 (0 <= k <= n). - Philippe Deléham, Mar 30 2007
T(n,k) = A053121(2*n+1,2*k+1). - Philippe Deléham, Apr 16 2007, Apr 18 2007
T(n,k) = A039599(n,k) + A039599(n,k+1). - Philippe Deléham, Sep 11 2007
Sum_{k=0..n+1} T(n+1,k)*k^2 = A029760(n). - Philippe Deléham, Dec 16 2007
Sum_{k=0..n} T(n,k)*A059841(k) = A000984(n). - Philippe Deléham, Nov 12 2008
G.f.: 1/(1-xy-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-.... (continued fraction).
Sum_{k=0..n} T(n,k)*x^(n-k) = A000012(n), A001700(n), A194723(n+1), A194724(n+1), A194725(n+1), A194726(n+1), A194727(n+1), A194728(n+1), A194729(n+1), A194730(n+1) for x = 0,1,2,3,4,5,6,7,8,9 respectively. - Philippe Deléham, Nov 03 2011
From Peter Bala, Dec 21 2014: (Start)
This triangle factorizes in the Riordan group as ( C(x), x*C(x) ) * ( 1/(1 - x), x/(1 - x) ) = A033184 * A007318, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
Let U denote the lower unit triangular array with 1's on or below the main diagonal and zeros elsewhere. For k = 0,1,2,... define U(k) to be the lower unit triangular block array
/I_k 0\
\ 0 U/ having the k X k identity matrix I_k as the upper left block; in particular, U(0) = U. Then this array equals the bi-infinite product (...*U(2)*U(1)*U(0))*(U(0)*U(1)*U(2)*...). (End)
From Peter Bala, Jul 21 2015: (Start)
O.g.f. G(x,t) = (1/x) * series reversion of ( x/f(x,t) ), where f(x,t) = ( 1 + (1 + t)*x )^2/( 1 + t*x ).
1 + x*d/dx(G(x,t))/G(x,t) = 1 + (2 + t)*x + (6 + 4*t + t^2)*x^2 + ... is the o.g.f for A094527. (End)
Conjecture: Sum_{k=0..n} T(n,k)/(k+1)^2 = H(n+1)*A000108(n)*(2*n+1)/(n+1), where H(n+1) = Sum_{k=0..n} 1/(k+1). - Werner Schulte, Jul 23 2015
From Werner Schulte, Jul 25 2015: (Start)
Sum_{k=0..n} T(n,k)*(k+1)^2 = (2*n+1)*binomial(2*n,n). (A002457)
Sum_{k=0..n} T(n,k)*(k+1)^3 = 4^n*(3*n+2)/2.
Sum_{k=0..n} T(n,k)*(k+1)^4 = (2*n+1)^2*binomial(2*n,n).
Sum_{k=0..n} T(n,k)*(k+1)^5 = 4^n*(15*n^2+15*n+4)/4. (End)
The o.g.f. G(x,t) is such that G(x,t+1) is the o.g.f. for A035324, but with an offset of 0, and G(x,t-1) is the o.g.f. for A033184, again with an offset of 0. - Peter Bala, Sep 20 2015
Denote this lower triangular array by L; then L * transpose(L) is the Cholesky factorization of the Hankel matrix ( 1/(i+j)*binomial(2*i+2*j-2, i+j-1) )_i,j >= 1 = A172417 read as a square array. See Chamberland, p. 1669. - Peter Bala, Oct 15 2023
EXAMPLE
Triangle T(n,k) starts:
n\k 0 1 2 3 4 5 6 7 8 9 10
0: 1
1: 2 1
2: 5 4 1
3: 14 14 6 1
4: 42 48 27 8 1
5: 132 165 110 44 10 1
6: 429 572 429 208 65 12 1
7: 1430 2002 1638 910 350 90 14 1
8: 4862 7072 6188 3808 1700 544 119 16 1
9: 16796 25194 23256 15504 7752 2907 798 152 18 1
10: 58786 90440 87210 62016 33915 14364 4655 1120 189 20 1
... Reformatted and extended by Wolfdieter Lang, Nov 13 2012.
Production matrix begins:
2, 1
1, 2, 1
0, 1, 2, 1
0, 0, 1, 2, 1
0, 0, 0, 1, 2, 1
0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 1, 2, 1
0, 0, 0, 0, 0, 0, 1, 2, 1
- Philippe Deléham, Nov 07 2011
From Wolfdieter Lang, Nov 13 2012: (Start)
Recurrence: T(5,1) = 165 = 1*42 + 2*48 +1*27. The Riordan A-sequence is [1,2,1].
Recurrence from Riordan Z-sequence [2,1]: T(5,0) = 132 = 2*42 + 1*48. (End)
From Wolfdieter Lang, Sep 20 2013: (Start)
Example for rho(N) = 2*cos(Pi/N) powers:
n=2: rho(N)^5 = 5*R(N, 2) + 4*R(N, 4) + 1*R(N, 6) = 5*S(1, rho(N)) + 4*S(3, rho(N)) + 1*S(5, rho(N)), identical in N >= 1. For N=5 (the pentagon with only one distinct diagonal) the degree delta(5) = 2, hence R(5, 4) and R(5, 6) can be reduced, namely to R(5, 1) = 1 and R(5, 6) = -R(5,1) = -1, respectively. Thus rho(5)^5 = 5*R(N, 2) + 4*1 + 1*(-1) = 3 + 5*R(N, 2) = 3 + 5*rho(5), with the golden section rho(5). (End)
MAPLE
T:=(n, k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); # N. J. A. Sloane, Aug 26 2013
# Uses function PMatrix from A357368. Adds row and column above and to the left.
PMatrix(10, n -> binomial(2*n, n) / (n + 1)); # Peter Luschny, Oct 07 2022
MATHEMATICA
Flatten[Table[Binomial[2n, n-k] - Binomial[2n, n-k-2], {n, 0, 9}, {k, 0, n}]] (* Jean-François Alcover, May 03 2011 *)
PROG
(Sage) # Algorithm of L. Seidel (1877)
# Prints the first n rows of the triangle.
def A039598_triangle(n) :
D = [0]*(n+2); D[1] = 1
b = True; h = 1
for i in range(2*n) :
if b :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
else :
for k in range(1, h, 1) : D[k] += D[k+1]
b = not b
if b : print([D[z] for z in (1..h-1) ])
A039598_triangle(10) # Peter Luschny, May 01 2012
(Magma) /* As triangle: */ [[Binomial(2*n, n-k) - Binomial(2*n, n-k-2): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 22 2015
(PARI) T(n, k)=binomial(2*n, n-k) - binomial(2*n, n-k-2) \\ Charles R Greathouse IV, Nov 07 2016
CROSSREFS
Mirror image of A050166. Row sums are A001700.
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
Typo in one entry corrected by Philippe Deléham, Dec 16 2007
STATUS
approved
The convolution matrix of the double factorial of odd numbers (A001147).
+10
64
1, 3, 1, 15, 9, 1, 105, 87, 18, 1, 945, 975, 285, 30, 1, 10395, 12645, 4680, 705, 45, 1, 135135, 187425, 82845, 15960, 1470, 63, 1, 2027025, 3133935, 1595790, 370125, 43890, 2730, 84, 1, 34459425, 58437855, 33453945, 8998290
OFFSET
1,2
COMMENTS
Previous name was: A triangle of numbers related to the triangle A035324; generalization of Stirling numbers of second kind A008277 and Lah numbers A008297.
If one replaces in the recurrence the '2' by '0', resp. '1', one obtains the Lah-number, resp. Stirling-number of 2nd kind, triangle A008297, resp. A008277.
The product of two lower triangular Jabotinsky matrices (see A039692 for the Knuth 1992 reference) is again such a Jabotinsky matrix: J(n,m) = Sum_{j=m..n} J1(n,j)*J2(j,m). The e.g.f.s of the first columns of these triangular matrices are composed in the reversed order: f(x)=f2(f1(x)). With f1(x)=-(log(1-2*x))/2 for J1(n,m)=|A039683(n,m)| and f2(x)=exp(x)-1 for J2(n,m)=A008277(n,m) one has therefore f2(f1(x))=1/sqrt(1-2*x) - 1 = f(x) for J(n,m)=a(n,m). This proves the matrix product given below. The m-th column of a Jabotinsky matrix J(n,m) has e.g.f. (f(x)^m)/m!, m>=1.
a(n,m) gives the number of forests with m rooted ordered trees with n non-root vertices labeled in an organic way. Organic labeling means that the vertex labels along the (unique) path from the root with label 0 to any leaf (non-root vertex of degree 1) is increasing. Proof: first for m=1 then for m>=2 using the recurrence relation for a(n,m) given below. - Wolfdieter Lang, Aug 07 2007
Also the Bell transform of A001147(n+1) (adding 1,0,0,... as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
LINKS
J. Fernando Barbero G., Jesús Salas, Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
P. Blasiak, K. A. Penson and A. I. Solomon, The Boson Normal Ordering Problem and Generalized Bell Numbers, arXiv:quant-ph/0212072, 2002.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
Richell O. Celeste, Roberto B. Corcino and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients. Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
Tom Copeland, Mathemagical Forests, 2008.
A. Dzhumadildaev and D. Yeliussizov, Path decompositions of digraphs and their applications to Weyl algebra, arXiv preprint arXiv:1408.6764v1 [math.CO], 2014. [Version 1 contained many references to the OEIS, which were removed in Version 2. - N. J. A. Sloane, Mar 28 2015]
Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
D. E. Knuth, Convolution polynomials, arXiv:math/9207221 [math.CA]; Mathematica J. 2.1 (1992), no. 4, 67-78.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Wolfdieter Lang, First 10 rows.
Shi-Mei Ma, Some combinatorial sequences associated with context-free grammars, arXiv:1208.3104v2 [math.CO], 2012.
Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
FORMULA
a(n, m) = Sum_{j=m..n} |A039683(n, j)|*S2(j, m) (matrix product), with S2(j, m) := A008277(j, m) (Stirling2 triangle). Priv. comm. to Wolfdieter Lang by E. Neuwirth, Feb 15 2001; see also the 2001 Neuwirth reference. See the comment on products of Jabotinsky matrices.
a(n, m) = n!*A035324(n, m)/(m!*2^(n-m)), n >= m >= 1; a(n+1, m)= (2*n+m)*a(n, m)+a(n, m-1); a(n, m) := 0, n<m; a(n, 0) := 0, a(1, 1)=1.
E.g.f. of m-th column: ((x*c(x/2)/sqrt(1-2*x))^m)/m!, where c(x) = g.f. for Catalan numbers A000108.
From Vladimir Kruchinin, Mar 30 2011: (Start)
G.f. (1/sqrt(1-2*x) - 1)^k = Sum_{n>=k} (k!/n!)*a(n,k)*x^n.
a(n,k) = 2^(n+k) * n! / (4^n*n*k!) * Sum_{j=0..n-k} (j+k) * 2^(j) * binomial(j+k-1,k-1) * binomial(2*n-j-k-1,n-1). (End)
From Peter Bala, Nov 25 2011: (Start)
E.g.f.: G(x,t) = exp(t*A(x)) = 1 + t*x + (3*t + t^2)*x^2/2! + (15*t + 9*t^2 + t^3)*x^3/3! + ..., where A(x) = -1 + 1/sqrt(1-2*x) satisfies the autonomous differential equation A'(x) = (1+A(x))^3.
The generating function G(x,t) satisfies the partial differential equation t*(dG/dt+G) = (1-2*x)*dG/dx, from which follows the recurrence given above.
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x)^3*d/dx. Cf. A008277 (D = (1+x)*d/dx), A105278 (D = (1+x)^2*d/dx), A035469 (D = (1+x)^4*d/dx) and A049029 (D = (1+x)^5*d/dx). (End)
The n-th row polynomial R(n,x) is given by the Dobinski-type formula R(n,x) = exp(-x)*Sum_{k>=1} k*(k+2)*...*(k+2*n-2)*x^k/k!. - Peter Bala, Jun 22 2014
T(n,k) = 2^(k-n)*hypergeom([k-n,k+1],[k-2*n+1],2)*Gamma(2*n-k)/(Gamma(k)*Gamma(n-k+1)). - Peter Luschny, Mar 31 2015
T(n,k) = 2^n*Sum_{j=1..k} ((-1)^(k-j)*binomial(k, j)*Pochhammer(j/2, n)) / k!. - Peter Luschny, Mar 04 2024
EXAMPLE
Matrix begins:
1;
3, 1;
15, 9, 1;
105, 87, 18, 1;
945, 975, 285, 30, 1;
...
Combinatoric meaning of a(3,2)=9: The nine increasing path sequences for the three rooted ordered trees with leaves labeled with 1,2,3 and the root labels 0 are: {(0,3),[(0,1),(0,2)]}; {(0,3),[(0,2),(0,1)]}; {(0,3),(0,1,2)}; {(0,1),[(0,3),(0,2)]}; [(0,1),[(0,2),(0,3)]]; [(0,2),[(0,1),(0,3)]]; {(0,2),[(0,3),(0,1)]}; {(0,1),(0,2,3)}; {(0,2),(0,1,3)}.
MAPLE
T := (n, k) -> 2^(k-n)*hypergeom([k-n, k+1], [k-2*n+1], 2)*GAMMA(2*n-k)/
(GAMMA(k)*GAMMA(n-k+1)); for n from 1 to 9 do seq(simplify(T(n, k)), k=1..n) od; # Peter Luschny, Mar 31 2015
T := (n, k) -> local j; 2^n*add((-1)^(k-j)*binomial(k, j)*pochhammer(j/2, n), j = 1..k)/k!: for n from 1 to 6 do seq(T(n, k), k=1..n) od; # Peter Luschny, Mar 04 2024
MATHEMATICA
a[n_, k_] := 2^(n+k)*n!/(4^n*n*k!)*Sum[(j+k)*2^(j)*Binomial[j + k - 1, k-1]*Binomial[2*n - j - k - 1, n-1], {j, 0, n-k}]; Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ] [[1 ;; 40]] (* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
PROG
(Maxima) a(n, k):=2^(n+k)*n!/(4^n*n*k!)*sum((j+k)*2^(j)*binomial(j+k-1, k-1)*binomial(2*n-j-k-1, n-1), j, 0, n-k) /* Vladimir Kruchinin, Mar 30 2011 */
(Haskell)
a035342 n k = a035342_tabl !! (n-1) !! (k-1)
a035342_row n = a035342_tabl !! (n-1)
a035342_tabl = map fst $ iterate (\(xs, i) -> (zipWith (+)
([0] ++ xs) $ zipWith (*) [i..] (xs ++ [0]), i + 2)) ([1], 3)
-- Reinhard Zumkeller, Mar 12 2014
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
print(bell_matrix(lambda n: A001147(n+1), 9)) # Peter Luschny, Jan 19 2016
CROSSREFS
The column sequences are A001147, A035101, A035119, ...
Row sums: A049118(n), n >= 1.
KEYWORD
easy,nice,nonn,tabl
EXTENSIONS
Simpler name from Peter Luschny, Mar 31 2015
STATUS
approved
G.f.: (1-2*x*c(x))/(1-3*x*c(x)) where c(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. for Catalan numbers A000108.
+10
19
1, 1, 4, 17, 74, 326, 1446, 6441, 28770, 128750, 576944, 2587850, 11615932, 52167688, 234383146, 1053386937, 4735393794, 21291593238, 95747347176, 430624242942, 1936925461644, 8712882517188, 39195738193836, 176335080590442, 793336332850164, 3569368545752076
OFFSET
0,3
COMMENTS
Row sums of triangle A035324.
a(n+1) = {1, 4, 17, 74, 326, ...} is the binomial transform of A059738. - Philippe Deléham, Nov 26 2009
(1, 4, 17, 74, 326, ...) is the invert transform of the odd-indexed central binomial coefficients, A001700. - David Callan, Oct 14 2012
The sequence starting with index 1 is the INVERT transform of A001700: (1, 3, 10, 35, 126, ...) and the second INVERT transform of the Catalan numbers starting with index 1: (1, 2, 5, 14, 42, ...). - Gary W. Adamson, Jun 23 2015
From Peter Bala, Jan 27 2020: (Start)
This sequence is the main diagonal of the lower triangular array formed by taking the first column (k = 0) of the array equal to (1,1,3,9,27,...) - powers of 3 with 1 prepended - and then completing the triangle using the relation T(n,k) = T(n-1,k) + T(n,k-1) for k >= 1. See my link in A001517.
1
1 1
3 4 4
9 13 17 17
27 40 57 74 74
81 121 178 252 326 326
...
(End)
REFERENCES
L. W. Shapiro and C. J. Wang, Generating identities via 2 X 2 matrices, Congressus Numerantium, 205 (2010), 33-46.
LINKS
José Agapito, Ângela Mestre, Maria M. Torres, and Pasquale Petrullo, On One-Parameter Catalan Arrays, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.1 and arXiv version, arXiv:1505.05568 [math.CO], 2015.
Paul Barry and Arnauld Mesinga Mwafise, Classical and Semi-Classical Orthogonal Polynomials Defined by Riordan Arrays, and Their Moment Sequences, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.5.
Richard Ehrenborg, Gábor Hetyei, and Margaret Readdy, Catalan-Spitzer permutations, arXiv:2310.06288 [math.CO], 2023. See p. 20.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
G.f.: x*c(x)/(1-3*x*c(x)), c(x)= g.f. of Catalan numbers A000108.
a(n+1) = Sum_{k=0..n} 2^k*comb(2n+1, n-k)*2*(k+1)/(n+k+2) - Paul Barry, Jun 22 2004
a(n) = (9*a(n-1) - Catalan(n-1))/2, n > 1. - Vladeta Jovovic, Aug 08 2004
a(n+1) = Sum_{k=0..n} A039598(n,k)*2^k. - Philippe Deléham, Mar 21 2007
G.f.: 2 / (3 - 1 / sqrt(1 - 4*x)). - Michael Somos, Apr 08 2007
a(n) = Sum_{k=0..n} A039599(n,k)*A001045(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i <= j), and A[i,j]=0, otherwise. Then, for n >= 1, a(n+1) = (-1)^n*charpoly(A,-3). - Milan Janjic, Jul 08 2010
From Gary W. Adamson, Jul 25 2011: (Start)
a(n) = upper left term in M^(n-1), M = an infinite square production matrix as follows:
4, 1, 0, 0, 0, ...
1, 1, 1, 0, 0, ...
1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, ...
... (End)
D-finite with recurrence: 2*n*a(n) + (12-17*n)*a(n-1) + 18*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011
a(n) ~ 3^(2*n-1)/2^(n+1). - Vaclav Kotesovec, Oct 08 2012
0 = a(n)*(1296*a(n+1) - 1098*a(n+2) + 180*a(n+3)) + a(n+1)*(-126*a(n+1) + 253*a(n+2) - 58*a(n+3)) + a(n+2)*(-10*a(n+2) + 4*a(n+3)) if n > 0. - Michael Somos, Jan 23 2014
O.g.f.: A(x) = 1/(1 - (1/2)*Sum_{n >= 1} binomial(2*n,n)*x^n). - Peter Bala, Sep 01 2016
a(n) = 3^(2*n-1)/2^(n+1) + 2^n * (2*n-1)!! * hypergeom([1,n+1], [n+2], 8/9)/(9*(n+1)!) + 0^n * 2/3. - Vladimir Reshetnikov, Oct 08 2016
EXAMPLE
G.f. = 1 + x + 4*x^2 + 17*x^3 + 74*x^4 + 326*x^5 + 1446*x^6 + 6441*x^7 + ...
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+3*n*(n-1)/2,
(17/2-6/n)*a(n-1)-(18-27/n)*a(n-2))
end:
seq(a(n), n=0..28); # Alois P. Heinz, Jan 28 2020
MATHEMATICA
Table[SeriesCoefficient[2/(3-1/Sqrt[1-4*x]), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2012 *)
FunctionExpand@Table[3^(2n-1)/2^(n+1) + 2^n (2n-1)!! Hypergeometric2F1[1, n + 1/2, n + 2, 8/9]/(9 (n + 1)!) + 2 KroneckerDelta[n]/3, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 08 2016 *)
PROG
(PARI) {a(n) = if( n<1, n==0, polcoeff( serreverse( x * (1 + 2*x) / (1 + 3*x)^2 + x * O(x^n) ), n))}; /* Michael Somos, Apr 08 2007 */
(PARI) {a(n) = if( n<0, 0, polcoeff( 2 / (3 - 1 / sqrt(1 - 4*x + x * O(x^n))), n))}; /* Michael Somos, Apr 08 2007 */
(Magma) [1] cat [n eq 1 select 1 else (9*Self(n-1)-Catalan(n-1))/2: n in [1..30]]; // Vincenzo Librandi, Jun 25 2015
(Sage) (2/(3-1/sqrt(1-4*x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 02 2019
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved
A convolution triangle of numbers based on A001405 (central binomial coefficients).
+10
13
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 6, 10, 9, 4, 1, 10, 22, 22, 14, 5, 1, 20, 44, 54, 40, 20, 6, 1, 35, 93, 123, 109, 65, 27, 7, 1, 70, 186, 281, 276, 195, 98, 35, 8, 1, 126, 386, 618, 682, 541, 321, 140, 44, 9, 1, 252, 772, 1362, 1624, 1440, 966, 497, 192, 54, 10, 1
OFFSET
0,4
COMMENTS
T(n,k) is the number of 2-Motzkin paths (i.e., Motzkin paths with blue and red level steps) with no level steps at positive height and having k blue level steps. Example: T(4,2)=9 because, denoting U=(1,1), D=(1,-1), B=blue (1,0), R=red (1,0), we have BBRR, BRBR, BRRB, RBBR, RBRB, RRBB, BBUD, BUDB, and UDBB. - Emeric Deutsch, Jun 07 2011
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(1-(1+x)*z-z^2*c(z^2)), with c(x) the g.f. for Catalan numbers A000108.
Column sequences: A001405, A045621.
Riordan array (f(x), x*f(x)), f(x) the g.f. of A001405. - Philippe Deléham, Dec 08 2009
From Paul Barry, Oct 21 2010: (Start)
Riordan array ((sqrt(1+2x) - sqrt(1-2x))/(2x*sqrt(1-2x)), (sqrt(1+2x)-sqrt(1-2x))/(2*sqrt(1-2x))),
inverse of Riordan array ((1+x)/(1+2x+2x^2), x(1+x)/(1+2x+2x^2)) (A181472). (End)
FORMULA
G.f. for column m: cbi(x)*(x*cbi(x))^m, with cbi(x) := (1+x*c(x^2))/sqrt(1-4*x^2) = 1/(1-x-x^2*c(x^2)), where c(x) is the g.f. for Catalan numbers A000108.
T(n,k) = Sum_{j>=0} A053121(n,j)*binomial(j,k). - Philippe Deléham, Mar 30 2007
T(n,k) = T(n-1,k-1) + T(n-1,l) + Sum_{j>=0} T(n-1,k+1+j)*(-1)^j. - Philippe Deléham, Feb 23 2012
EXAMPLE
Fourth row polynomial (n=3): p(3,x)= 3 + 5*x + 3*x^2 + x^3.
From Paul Barry, Oct 21 2010: (Start)
Triangle begins
1;
1, 1;
2, 2, 1;
3, 5, 3, 1;
6, 10, 9, 4, 1;
10, 22, 22, 14, 5, 1;
20, 44, 54, 40, 20, 6, 1;
35, 93, 123, 109, 65, 27, 7, 1;
Production matrix is
1, 1;
1, 1, 1;
-1, 1, 1, 1;
1, -1, 1, 1, 1;
-1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, 1, 1;
1, -1, 1, -1, 1, -1, 1, 1, 1;
-1, 1, -1, 1, -1, 1, -1, 1, 1, 1; (End)
MATHEMATICA
c[n_, j_] /; n < j || OddQ[n - j] = 0; c[n_, j_] = (j + 1) Binomial[n + 1, (n - j)/2]/(n + 1); t[n_, k_] := Sum[c[n, j]*Binomial[j, k], {j, 0, n}]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]][[;; 66]] (* Jean-François Alcover, Jul 13 2011, after Philippe Deléham *)
PROG
(PARI)
A053121(n, k) = if((n-k+1)%2==0, 0, (k+1)*binomial(n+1, (n-k)\2)/(n+1) );
T(n, k) = sum(j=k, n, A053121(n, j)*binomial(j, k));
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 21 2019
(Magma)
A053121:= func< n, k | ((n-k+1) mod 2) eq 0 select 0 else (k+1)*Binomial(n+1, Floor((n-k)/2))/(n+1) >;
T:= func< n, k | (&+[Binomial(j, k)*A053121(n, j): j in [k..n]]) >;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 21 2019
(Sage)
def A053121(n, k):
if (n-k+1) % 2==0: return 0
else: return (k+1)*binomial(n+1, ((n-k)//2))/(n+1)
def T(n, k): return sum(binomial(j, k)*A053121(n, j) for j in (k..n))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 21 2019
(GAP)
A053121:= function(n, k)
if ((n-k+1) mod 2)=0 then return 0;
else return (k+1)*Binomial(n+1, Int((n-k)/2))/(n+1);
fi;
end;
T:= function(n, k)
return Sum([k..n], j-> Binomial(j, k)*A053121(n, j));
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 21 2019
CROSSREFS
Row sums: A054341.
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Wolfdieter Lang, Mar 13 2000
STATUS
approved
A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).
+10
12
1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
OFFSET
0,2
COMMENTS
In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4x),x/sqrt(1-4x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
FORMULA
a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n<m.
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*((x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-xy-2x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015
EXAMPLE
Triangle begins:
1;
2, 1;
6, 4, 1;
20, 16, 6, 1;
70, 64, 30, 8, 1;
252, 256, 140, 48, 10, 1;
924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From Paul Barry, May 06 2009: (Start)
Production matrix begins
2, 1;
2, 2, 1;
0, 2, 2, 1;
-2, 0, 2, 2, 1;
0, -2, 0, 2, 2, 1;
4, 0, -2, 0, 2, 2, 1;
0, 4, 0, -2, 0, 2, 2, 1;
-10, 0, 4, 0, -2, 0, 2, 2, 1;
0, -10, 0, 4, 0, -2, 0, 2, 2, 1; (End)
MAPLE
A054335 := proc(n, k)
if k <0 or k > n then
0 ;
elif type(k, odd) then
kprime := floor(k/2) ;
binomial(n-kprime-1, kprime)*4^(n-k) ;
else
kprime := k/2 ;
binomial(2*n-k, n-kprime)*binomial(n-kprime, kprime)/binomial(k, kprime) ;
end if;
end proc: # R. J. Mathar, Mar 12 2013
# Uses function PMatrix from A357368. Adds column 1, 0, 0, 0, ... to the left.
PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
MATHEMATICA
Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
PROG
(PARI) T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2, k/2)/binomial(k, k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 20 2019
(Magma)
T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2), Floor(k/2))/Binomial(k, Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
[[T(n, k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
(Sage)
def T(n, k):
if (mod(k, 2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2, k/2)/binomial(k, k/2)
else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
(GAP)
T:= function(n, k)
if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2), Int(k/2))/Binomial(k, Int(k/2));
else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
CROSSREFS
Row sums: A026671.
KEYWORD
easy,nice,nonn,tabl
AUTHOR
Wolfdieter Lang, Mar 13 2000
STATUS
approved
A convolution triangle of numbers obtained from A034171.
+10
7
1, 6, 1, 42, 12, 1, 315, 120, 18, 1, 2457, 1134, 234, 24, 1, 19656, 10458, 2673, 384, 30, 1, 160056, 95256, 28539, 5148, 570, 36, 1, 1320462, 861597, 292572, 62532, 8775, 792, 42, 1, 11003850, 7760610, 2920347, 713664, 119565, 13770, 1050, 48, 1
OFFSET
1,2
COMMENTS
a(n,1)= A034171(n-1); a(n,m)=: s2(4; n,m), generalizing s2(2; n,m) := A007318(n-1,m-1) (Pascal), s2(3; n,m) := A035324(n,m).
LINKS
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n+1, m) = 3*(3*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.
G.f. for column m: ((-1+(1-9*x)^(-1/3))/3)^m.
EXAMPLE
Triangle begins:
1,
6, 1;
42, 12, 1;
315, 120, 18, 1;
2457, 1134, 234, 24, 1;
19656, 10458, 2673, 384, 30, 1;
...
MATHEMATICA
a[n_, m_] /; n - 1 >= m >= 1 := (m*a[n - 1, m - 1])/n + (3*(m + 3*(n - 1))*a[n - 1, m])/n; a[n_, m_] /; n < m = 0; a[n_, 0] = 0; a[n_, n_] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]] (* Jean-François Alcover, Jul 10 2012, from formula *)
CROSSREFS
Row sums: A049028(n), n >= 1.
KEYWORD
easy,nice,nonn,tabl
STATUS
approved
A convolution triangle of numbers obtained from A034255.
+10
7
1, 10, 1, 120, 20, 1, 1560, 340, 30, 1, 21216, 5520, 660, 40, 1, 297024, 88032, 12880, 1080, 50, 1, 4243200, 1392768, 236448, 24640, 1600, 60, 1, 61526400, 21952320, 4187232, 512464, 41800, 2220, 70, 1, 902387200, 345396480, 72452160, 10060416
OFFSET
0,2
COMMENTS
a(n,m)=: s2(5; n,m), generalizing s2(2; n,m) := A007318(n-1,m-1) (Pascal), s2(3; n,m) := A035324(n,m), s2(4; n,m)= A035529.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n+1, m) = 4*(4*n+m)*a(n, m)/(n+1) + m*a(n, m-1)/(n+1), n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.
G.f. for column m: ((-1+(1-16*x)^(-1/4))/4)^m.
CROSSREFS
Cf. A035529, A034255. Row sums: A048965(n), n >= 1.
KEYWORD
easy,nonn,tabl
STATUS
approved
A convolution triangle of numbers obtained from A034789.
+10
7
1, 21, 1, 546, 42, 1, 15561, 1533, 63, 1, 466830, 54054, 2961, 84, 1, 14471730, 1885338, 124740, 4830, 105, 1, 458960580, 65542932, 4977882, 236880, 7140, 126, 1, 14801478705, 2277656901, 192582117, 10661301, 399735, 9891, 147, 1
OFFSET
1,2
COMMENTS
a(n,1) = A034789(n). a(n,m)=: s2(7; n,m), a member of a sequence of unsigned triangles including s2(2; n,m)=A007318(n-1,m-1) (Pascal's triangle). s2(3; n,m)= A035324(n,m), s2(4; n,m)= A035529(n,m), s2(5; n,m)= A048882(n,m), s2(6; n,m)= A049375.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
W. Lang, First 10 rows.
FORMULA
a(n, m) = 6*(6*(n-1)+m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1. G.f. for m-th column: ((-1+(1-36*x)^(-1/6))/6)^m.
EXAMPLE
{1}; {21,1}; {546,42,1}; {15561,1533,63,1}; ...
CROSSREFS
Cf. A092086 (row sums), A092087 (alternating row sums).
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Mar 19 2004
STATUS
approved
Triangle of numbers obtained from the partition array A134284.
+10
5
1, 3, 1, 10, 3, 1, 35, 19, 3, 1, 126, 65, 19, 3, 1, 462, 331, 92, 19, 3, 1, 1716, 1190, 421, 92, 19, 3, 1, 6435, 5587, 1805, 502, 92, 19, 3, 1, 24310, 20613, 8771, 2075, 502, 92, 19, 3, 1, 92378, 92821, 35726, 10616, 2318, 502, 92, 19, 3, 1, 352716, 347930, 160205
OFFSET
1,2
COMMENTS
This triangle is called s2(3)'.
FORMULA
a(n,m) = sum(product(s2(3;j,1)^e(n,m,q,j),j=1..n),k=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. s2(3;n,1) = A035324(n,1) = A001700(n-1) = binomial(2*n-1,n).
Row sums = A001700. Triangle A134285 = A001263 * A000012. - Gary W. Adamson, Nov 19 2007
EXAMPLE
Triangle starts:
1
3, 1
10, 3, 1
35, 19, 3, 1
126, 65, 19, 3, 1
...
a(4,2)=19 because the m=2 parts partitions (1^1,3^1) and (2^2) of n=4 lead to 1^1*10^1 + 3^2 =19, since A001700(n-1)=[1,3,10,...], n>=1.
CROSSREFS
Row sums A134826. Alternating row sums A134827.
Cf. A001700.
KEYWORD
nonn,easy,tabl
AUTHOR
Wolfdieter Lang, Nov 13 2007
STATUS
approved

Search completed in 0.027 seconds