Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a005637 -id:a005637
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of series-reduced labeled graphs with n nodes.
(Formerly M1290)
+10
18
1, 1, 2, 4, 15, 102, 4166, 402631, 76374899, 27231987762, 18177070202320, 22801993267433275, 54212469444212172845, 246812697326518127351384, 2173787304796735262709419350, 37373588848096468764431235680525, 1263513534110606141026676778422031561
OFFSET
0,3
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. M. Jackson and J. W. Reilly, The enumeration of homeomorphically irreducible labeled graphs, J. Combin. Theory, B 19 (1975), 272-286.
FORMULA
E.g.f.: (1 + x)^( - 1/2) * exp(x/2 - x^2/4) * Sum_{k=0..inf} (2 * exp( - x/(1 + x)))^binomial(k, 2) * (exp(x^2/2/(1 + x)))^k * x^k/k!. - Vladeta Jovovic, Mar 23 2001
MATHEMATICA
max = 15; f[x_] := (1 + x)^(-1/2)*Exp[x/2-x^2/4]*Sum[(2*Exp[-x/(1+x)])^Binomial[k, 2]*Exp[x^2/2/(1+x)]^k*x^k/k!, {k, 0, max}]; CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]!(* Jean-François Alcover, Nov 25 2011, after Vladeta Jovovic *)
PROG
(PARI) seq(n)={my(x='x+O('x^(n+1))); Vec(serlaplace((1 + x)^( - 1/2) * exp(x/2 - x^2/4) * sum(k=0, n, (2 * exp(-x/(1 + x)))^binomial(k, 2) * (exp(x^2/2/(1 + x)))^k * x^k/k!)))} \\ Andrew Howroyd, Feb 23 2024
CROSSREFS
Row sums of A060514 and A307806.
The unlabeled version is A005637.
Cf. A003515 (connected).
KEYWORD
nonn,nice
EXTENSIONS
More terms from Vladeta Jovovic, Mar 23 2001
STATUS
approved
Number of simple graphs on n unlabeled nodes with minimum degree exactly 2.
+10
2
0, 0, 1, 2, 8, 43, 360, 4869, 113622, 4605833, 325817259, 40350371693, 8825083057727, 3447229161054412, 2432897732375453872, 3135299553791882831175, 7445569254636418368355175, 32831169277561326131677454356, 270499962116368309216399255404116
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Minimum Vertex Degree
FORMULA
a(n) = A261919(n) - A007111(n).
CROSSREFS
Column k=2 of A294217.
A diagonal of A263293.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 03 2019
STATUS
approved

Search completed in 0.008 seconds