reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
Empirical: a(n) = 2*a(n-1) +4*a(n-2) +a(n-3).
Empirical: G.f.: -x*(1+5*x+x^2) / ( (1+x)*(x^2+3*x-1) ). - R. J. Mathar, Feb 19 2015
Empirical: a(n)+a(n+1) = 2*A003688(n+1). - R. J. Mathar, Feb 19 2015
approved
editing
_R. H. Hardin (rhhardin(AT)att.net) _ Aug 02 2011
editing
approved
Column 3 of A193648
approved
editing
editing
approved
R. H. Hardin, <a href="/A193643/b193643.txt">Table of n, a(n) for n = 1..200</a>
allocated for Ron HardinNumber of arrays of -3..3 integers x(1..n) with every x(i) in a subsequence of length 1 or 2 with sum zero
1, 7, 19, 67, 217, 721, 2377, 7855, 25939, 85675, 282961, 934561, 3086641, 10194487, 33670099, 111204787, 367284457, 1213058161, 4006458937, 13232434975, 43703763859, 144343726555, 476734943521, 1574548557121, 5200380614881
1,2
Empirical: a(n) = 2*a(n-1) +4*a(n-2) +a(n-3)
Some solutions for n=6
..2....1...-1....0....0....0....1....0....2...-2....2....1...-3....0....0....0
.-2...-1....1...-1...-3....0...-1....3...-2....2...-2...-1....3...-2....0....0
.-1....1....2....1....3....0....1...-3....2...-3...-2...-3....1....2....2....0
..1....0...-2...-3...-1...-2....1....3....0....3....2....3...-1....0...-2...-3
.-1...-3....0....3....1....2...-1...-3...-2....0....1...-2....2....2....2....3
..0....3....0...-3....0....0....1....0....2....0...-1....2...-2...-2...-2....0
allocated
nonn
R. H. Hardin (rhhardin(AT)att.net) Aug 02 2011
approved
editing