Nothing Special   »   [go: up one dir, main page]

login
A373598
a(n) = 1 if n and A327860(n) are both multiples of 3, where A327860 is the arithmetic derivative of the primorial base exp-function.
4
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
OFFSET
0
COMMENTS
Apparently the asymptotic mean is 1/18, although this is not a characteristic function for the multiples of 18.
FORMULA
a(n) = [A351083(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
a(n) = A079978(n) * A369653(n).
a(n) = A373143(A276086(n)).
If a(x) = a(y) = A329041(x,y) = 1, then a(x+y) = 1 also. See explanation in the comments of A373599.
PROG
(PARI)
A327860(n) = { my(s=0, m=1, p=2, e); while(n, e = (n%p); m *= (p^e); s += (e/p); n = n\p; p = nextprime(1+p)); (s*m); };
A373598(n) = (!(n%3) && !(A327860(n)%3));
CROSSREFS
Characteristic function of A373599.
Sequence in context: A000007 A240351 A358008 * A249832 A014041 A373258
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 18 2024
STATUS
approved