Nothing Special   »   [go: up one dir, main page]

login
A364858
a(n) = Sum_{d|n, d < n, d in S} d, where S is the set defined in A118372.
3
0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 24, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 25, 1, 22, 17, 30, 1, 54, 1, 40, 33, 26, 1, 64, 8, 43, 21, 46, 1, 48, 17, 64, 23, 32, 1, 46, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 93, 1
OFFSET
1,4
COMMENTS
First differs from A294888 at n = 48.
LINKS
FORMULA
a(n) <= A001065(n).
a(n) <= n if and only if n is in the set S.
a(n) = n if and only if n is S-perfect (A118372).
a(n) > n if and only if n is S-abundant (A181487).
MATHEMATICA
seq[nmax_] := Module[{s = {1}, a = {0}, sum}, Do[sum = Total[Select[Divisors[n], MemberQ[s, #] &]]; If[sum <= n, AppendTo[s, n]]; AppendTo[a, sum], {n, 2, nmax}]; a]; seq[100]
PROG
(PARI) lista(nmax) = {my(c = 0, s); print1(0, ", "); for(n=2, nmax, s = sumdiv(n, d, !bittest(c, d)*d) - n; if(s > n, c+=1<<n); print1(s, ", ")); } \\ after M. F. Hasler at A181487
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 11 2023
STATUS
approved