Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322600
a(n) is the number of unlabeled rank-3 graded lattices with 5 coatoms and n atoms.
4
1, 5, 20, 68, 190, 441, 907, 1690, 2916, 4734, 7310, 10836, 15528, 21619, 29365, 39045, 50961, 65434, 82809, 103453, 127751, 156117, 188980, 226794, 270037, 319204, 374813, 437409, 507553, 585831, 672847, 769233, 875637, 992735, 1121218, 1261802
OFFSET
1,2
LINKS
J. Kohonen, Counting graded lattices of rank three that have few coatoms, arXiv:1804.03679 [math.CO] preprint (2018).
FORMULA
For n>=3: a(n) = (175/192)n^4 - (3079/480)n^3 + (11771/480)n^2
- [7268/160, 7273/160]n
+ [33600, 34019, 34072, 33627, 33152, 34915, 33624, 33947, 33472, 33507,
34520, 34459, 32832, 33827, 34072, 34395, 33344, 34147, 33432, 33947,
34240, 33699, 33752, 34267, 32832, 34595, 34264, 33627, 33152, 34147,
34200, 34139, 33472, 33507, 33752, 35035, 33024, 33827, 34072, 33627,
33920, 34339, 33432, 33947, 33472, 34275, 33944, 34267, 32832, 33827,
34840, 33819, 33152, 34147, 33432, 34715, 33664, 33507, 33752, 34267] / 960.
The value of the first bracket depends on whether n is even or odd. The value of the second bracket depends on whether (n mod 60) is 0, 1, 2, ..., 59.
Conjectures from Colin Barker, Dec 20 2018: (Start)
G.f.: x*(1 + 4*x + 14*x^2 + 43*x^3 + 102*x^4 + 184*x^5 + 282*x^6 + 368*x^7 + 411*x^8 + 400*x^9 + 333*x^10 + 237*x^11 + 142*x^12 + 70*x^13 + 26*x^14 + 7*x^15 + x^16) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)).
a(n) = a(n-1) + a(n-2) - a(n-5) - a(n-6) - a(n-7) + a(n-8) + a(n-9) + a(n-10) - a(n-13) - a(n-14) + a(n-15) for n>15.
(End)
CROSSREFS
Fifth row of A300260.
Previous rows are A322598, A322599.
Sequence in context: A271599 A032286 A097552 * A084850 A270169 A007327
KEYWORD
nonn,easy
AUTHOR
Jukka Kohonen, Dec 19 2018
STATUS
approved