Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322596
Square array read by descending antidiagonals (n >= 0, k >= 0): let b(n,k) = (n+k)!/((n+1)!*k!); then T(n,k) = b(n,k) if b(n,k) is an integer, and T(n,k) = floor(b(n,k)) + 1 otherwise.
1
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 4, 3, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 4, 7, 9, 7, 4, 1, 1, 1, 4, 10, 14, 14, 10, 4, 1, 1, 1, 5, 12, 21, 26, 21, 12, 5, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 6, 19, 42, 66, 77, 66, 42, 19, 6, 1, 1, 1, 6, 22, 55, 99, 132, 132, 99, 55, 22, 6, 1, 1
OFFSET
0,8
COMMENTS
For n >= 1, T(n,k) is the number of nodes in n-dimensional space for Mysovskikh's cubature formula which is exact for any polynomial of degree k of n variables.
LINKS
Ivan P. Mysovskikh, On the construction of cubature formulae for very simple domains, USSR Computational Mathematics and Mathematical Physics, Volume 4, Issue 1, 1964, 1-17.
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...
1, 1, 2, 4, 5, 7, 10, 12, 15, 19, ...
1, 1, 3, 5, 9, 14, 21, 30, 42, 55, ...
1, 1, 3, 7, 14, 26, 42, 66, 99, 143, ...
1, 1, 4, 10, 21, 42, 77, 132, 215, 334, ...
1, 1, 4, 12, 30, 66, 132, 246, 429, 715, ...
1, 1, 5, 15, 42, 99, 215, 429, 805, 1430, ...
1, 1, 5, 19, 55, 143, 334, 715, 1430, 2702, ...
1, 1, 6, 22, 72, 201, 501, 1144, 2431, 4862, ...
...
As triangular array, this begins:
1;
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 2, 2, 1, 1;
1, 3, 4, 3, 1, 1;
1, 3, 5, 5, 3, 1, 1;
1, 4, 7, 9, 7, 4, 1, 1;
1, 4, 10, 14, 14, 10, 4, 1, 1;
1, 5, 12, 21, 26, 21, 12, 5, 1, 1;
1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1;
...
PROG
(Maxima)
b(n, k) := (n + k)!/((n + 1)!*k!)$
T(n, k) := if integerp(b(n, k)) then b(n, k) else floor(b(n, k)) + 1$
create_list(T(k, n - k), n, 0, 15, k, 0, n);
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
STATUS
approved