Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319129
Decimal expansion of (1 + sqrt(3) + sqrt(2*sqrt(3)))/2.
2
2, 2, 9, 6, 6, 3, 0, 2, 6, 2, 8, 8, 6, 5, 3, 8, 2, 4, 5, 7, 0, 4, 9, 4, 1, 9, 1, 7, 7, 3, 6, 1, 7, 0, 2, 7, 1, 2, 2, 2, 6, 0, 6, 8, 5, 2, 5, 8, 2, 8, 4, 2, 6, 8, 9, 1, 2, 1, 8, 8, 0, 0, 0, 0, 8, 0, 4, 9, 2, 9, 9, 2, 2, 4, 5, 0, 3, 4, 8, 9, 8, 1
OFFSET
0,1
COMMENTS
This constant and its reciprocal are the real solutions of x^4 - 2*x^3 - 2*x + 1 = (x^2 - (sqrt(3)+1)*x + 1)*(x^2 + (sqrt(3)-1)*x + 1) = 0.
Decimal expansion of the largest x satisfying x^2 - (1 + sqrt(3))*x + 1 = 0.
LINKS
EXAMPLE
2.29663026288653824570494191773617027122260685258284268912188000080492992...
MAPLE
Digits:=100: evalf((1+sqrt(3)+sqrt(2*sqrt(3)))/2); # Muniru A Asiru, Sep 12 2018
MATHEMATICA
RealDigits[(1 + Sqrt[3] + Sqrt[2 Sqrt[3]])/2, 10, 100][[1]] (* Bruno Berselli, Sep 13 2018 *)
PROG
(PARI) (1+sqrt(3)+sqrt(2*sqrt(3)))/2 \\ Altug Alkan, Sep 11 2018
CROSSREFS
Cf. A318605.
Sequence in context: A103710 A178236 A093589 * A073315 A298597 A066320
KEYWORD
nonn,cons
AUTHOR
A.H.M. Smeets, Sep 11 2018
STATUS
approved