Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A319128
Interleave n*(3*n - 2), 3*n^2 + n - 1, n=0,0,1,1, ... .
1
0, -1, 1, 3, 8, 13, 21, 29, 40, 51, 65, 79, 96, 113, 133, 153, 176, 199, 225, 251, 280, 309, 341, 373, 408, 443, 481, 519, 560, 601, 645, 689, 736, 783, 833, 883, 936, 989, 1045, 1101, 1160, 1219, 1281, 1343, 1408, 1473, 1541, 1609, 1680, 1751
OFFSET
0,4
COMMENTS
A144391(n) = -1, 3, 13, 29, 51, ... is in the hexagonal spiral begining with -1 (like from 0 in A000567):
.
55--54--53--52--51
/ \
56 32--31--30--29 50
/ / \ \
57 33 15--14--13 28 49
/ / / \ \ \
58 34 16 4---3 12 27 48
/ / / / \ \ \ \
59 35 17 5 -1 2 11 26 47
/ / / / / / / /
36 18 6 0---1 10 25 46
\ \ \ / / /
37 19 7---8---9 24 45
\ \ / /
38 20--21--22--23 44
\ /
39--40--41--42--43
.
A000567(n) = 0, 1, 8, 21, 40, ... is in the first hexagonal spiral.
The bisections 0, 1, 8, 21, ... and -1, 3, 13, 29, ... are on the respective main antidiagonals.
a(-n) = 0, 1, 5, 9, 16, 23, ... . The bisections n*(3*n + 2) and 3*n^2 - n - 1 are in both spirals on main diagonals.
The bisections of a(n) are in the second spiral: ... 29, 13, 3, -1, 0, 1, 8, 21, ... .
The bisections of a(-n) are in the first and in the second spiral: ... 33, 16, 5, 0, 1, 9, 23, ... .
FORMULA
a(n+1) = a(n) + (6*n^2 - 3*(-1)^n - 1)/4, n=0,1,2, ... , a(0) = 0.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4), n>3.
From Colin Barker, Sep 14 2018: (Start)
G.f.: -x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)).
a(n) = (-4*n + 3*n^2) / 4 for n even.
a(n) = (-3 - 4*n + 3*n^2) / 4 for n odd.
(End)
a(n) = (-3 + 3*(-1)^n - 8*n + 6*n^2)/8. - Colin Barker, Sep 14 2018
E.g.f.: (x*(3*x - 1)*cosh(x) + (3*x^2 - x - 3)*sinh(x))/4. - Stefano Spezia, Mar 15 2020
MAPLE
seq(op([3*n^2-2*n, 3*n^2+n-1]), n=0..30); # Muniru A Asiru, Sep 19 2018
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {0, -1, 1, 3 }, 40] (* Stefano Spezia, Sep 16 2018 *)
PROG
(PARI) concat(0, Vec(-x*(1 - 3*x - x^2) / ((1 - x)^3*(1 + x)) + O(x^40))) \\ Colin Barker, Sep 14 2018
(GAP) Flat(List([0..30], n->[3*n^2-2*n, 3*n^2+n-1])); # Muniru A Asiru, Sep 19 2018
CROSSREFS
Main diagonal of A318958.
Sequence in context: A322598 A363034 A317194 * A094110 A212649 A084535
KEYWORD
sign,easy
AUTHOR
Paul Curtz, Sep 11 2018
STATUS
approved