Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A215600
Expansion of psi(-x)^2 * f(-x)^6 in powers of x where psi(), f() are Ramanujan theta functions.
4
1, -8, 22, -16, -27, 40, -18, 80, -94, -40, 0, -48, 359, -80, -130, -320, 0, 160, 214, 400, -230, -152, -594, 416, -343, 240, 518, -400, 0, 200, 830, -592, -396, -776, 0, -400, 1098, 200, 0, 1120, 729, -552, -2068, 272, -1670, 800, 0, 400, 594, 1480, 598, 48
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of psi(-x)^8 * chi(-x^2)^6 = f(-x)^8 / chi(-x^2)^2 in powers of x where psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Sep 03 2013
Expansion of q^(-1/2) * (eta(q)^4 * eta(q^4) / eta(q^2))^2 in powers of q.
Euler transform of period 4 sequence [ -8, -6, -8, -8, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^15 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225564. - Michael Somos, Sep 03 2013
Convolution square of A215597.
a(2*n) = A215601(n). - Michael Somos, Sep 03 2013
EXAMPLE
1 - 8*x + 22*x^2 - 16*x^3 - 27*x^4 + 40*x^5 - 18*x^6 + 80*x^7 - 94*x^8 + ...
q - 8*q^3 + 22*q^5 - 16*q^7 - 27*q^9 + 40*q^11 - 18*q^13 + 80*q^15 - 94*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^6 EllipticTheta[ 2, Pi/4, q^(1/2)]^2 / (2 q^(1/4)), {q, 0, n}] (* Michael Somos, Sep 03 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ q]^8 / QPochhammer[ q^2, q^4]^2, {q, 0, n}] (* Michael Somos, Sep 03 2013 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^4 * eta(x^4 + A) / eta(x^2 + A))^2, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 16 2012
STATUS
approved