Nothing Special   »   [go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186349
Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f(i)=8i and g(j)=j^2. Complement of A186348.
5
1, 2, 4, 5, 8, 10, 13, 15, 19, 22, 26, 29, 34, 38, 43, 47, 53, 58, 64, 69, 76, 82, 89, 95, 103, 110, 118, 125, 134, 142, 151, 159, 169, 178, 188, 197, 208, 218, 229, 239, 251, 262, 274, 285, 298, 310, 323, 335, 349, 362, 376, 389, 404, 418, 433, 447, 463, 478, 494, 509, 526, 542, 559, 575, 593, 610, 628, 645, 664, 682, 701, 719, 739, 758, 778, 797, 818, 838, 859, 879, 901, 922, 944, 965, 988, 1010
OFFSET
1,2
FORMULA
a(n) = n + floor((n^2 - 1)/8).
a(n) = n + ceiling(n^2/8) - 1. - Wesley Ivan Hurt, Jun 28 2013
From Bruno Berselli, Jul 05 2013: (Start)
G.f.: x*(1 + x^2 - x^3 + x^4 - x^5)/((1+x)*(1+x^2)*(1-x)^3).
a(n) = (2*n*(n+8) - (1+(-1)^n)*(5+2*i^(n*(n+1))) - 2)/16 where i=sqrt(-1). (End)
E.g.f.: (8 - 2*cos(x) + (x^2 + 9*x - 6)*cosh(x) + (x^2 + 9*x - 1)*sinh(x))/8. - Stefano Spezia, Apr 06 2024
EXAMPLE
First, write
.....8...16..24..32..40..48..56..64..72..80.. (8i)
1..4..9..16...25...36.....49.....64.......81. (squares)
Then replace each number by its rank, where ties are settled by ranking 8i after the square:
p = (3,6,7,9,11,12,14,16,17,...) = A186348 = n + floor(sqrt(8n+1/2)).
q = (1,2,4,5,8,10,13,15,19,...) = a(n).
MAPLE
seq(k+ceil(k^2/8)-1, k=1..100); # Wesley Ivan Hurt, Jun 28 2013
MATHEMATICA
(* adjusted joint rank sequences p and q (=a(n)), using general formula for ranking 1st degree u*n+v and 2nd degree x*n^2 + y*n + z *)
d=-1/2; u=8; v=0; x=1; y=0;
k[n_]:=(x*n^2+y*n-v+d)/u;
a[n_]:=n+Floor[k[n]];
Table[a[n], {n, 1, 100}]
PROG
(Magma) m:=90; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x^2-x^3+x^4-x^5)/((1+x)*(1+x^2)*(1-x)^3))); // Bruno Berselli, Jul 05 2013
(PARI) a(n)=(n^2-1)\8+n \\ Charles R Greathouse IV, Jul 05 2013
(Maxima) makelist((2*n*(n+8)-(1+(-1)^n)*(5+2*%i^(n*(n+1)))-2)/16, n, 1, 90); /* Bruno Berselli, Jul 05 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 20 2011
STATUS
approved