OFFSET
0,3
COMMENTS
Number of partitions of n into parts 1, 2, 4, 8, an 16. [Joerg Arndt, Jul 12 2013]
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
LINKS
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 243
Index entries for linear recurrences with constant coefficients, signature (1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16)). [Joerg Arndt, Jul 12 2013]
MAPLE
1/(1-x)/(1-x^2)/(1-x^4)/(1-x^8)/(1-x^16)
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^2)(1-x^4)(1-x^8)(1-x^16)), {x, 0, 70}], x] (* or *) LinearRecurrence[{1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1}, {1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 14, 14, 20, 20, 26, 26, 36, 36, 46, 46, 60, 60, 74, 74, 94, 94, 114, 114, 140, 140, 166}, 70] (* Harvey P. Dale, Oct 16 2021 *)
PROG
(PARI) a(n)=floor((n^4+62*n^3+1271*n^2+9610*n+31125+(n+1)*(2*n^2+91*n+1179)*(-1)^n)/24576+1/512*(-1)^(n\2)*(n\2+1)*(n\2+15)+1/32*(-1)^(n\4)*(n\4+1)*(n%4>1)) \\ Tani Akinari, Jul 12 2013
(PARI) Vec(1/((1-x)*(1-x^2)*(1-x^4)*(1-x^8)*(1-x^16))+O(x^66)) \\ Joerg Arndt, Jul 12 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved