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Abstract—SDN promises to make networks more flexible, pro-
grammable, and easier to manage. Inherent security problems
in SDN today, however, pose a threat to the promised benefits.
First, the network operator lacks tools to proactively ensure that
policies will be followed or to reactively inspect the behavior
of the network. Second, the distributed nature of state updates
at the data plane leads to inconsistent network behavior during
reconfigurations. Third, the large flow space makes the data plane
susceptible to state exhaustion attacks.

This paper presents SDNsec, an SDN security extension that
provides forwarding accountability for the SDN data plane.
Forwarding rules are encoded in the packet, ensuring con-
sistent network behavior during reconfigurations and limiting
state exhaustion attacks due to table lookups. Symmetric-key
cryptography is used to protect the integrity of the forwarding
rules and enforce them at each switch. A complementary path
validation mechanism allows the controller to reactively examine
the actual path taken by the packets. Furthermore, we present
mechanisms for secure link-failure recovery.

I. INTRODUCTION

Software Defined Networking (SDN) and its current real-

ization – OpenFlow [1] – promise to revolutionize network-

ing by centralizing network administration and eliminating

vendor lock-in. Rapid service deployment, simplified network

management, and reduced operational costs are some of the

promised benefits. Furthermore, SDN serves as a building block

to mitigate network security issues [2–4]. Ironically, though,

security of SDN itself is a neglected issue.

SDN is rife with vulnerabilities at the data plane. Com-

promised switches [5–7] can redirect traffic over unauthorized

paths to perform eavesdropping, man-in-the-middle attacks, or

to bypass security middleboxes [8]. Furthermore, they can

disrupt availability by launching state exhaustion attacks against

other switches [8–10] or by simply dropping packets. In addi-

tion, next generation botnets, consisting of compromised hosts

and switches, could unleash an unprecedented firepower against

their victims. There are latent vulnerabilities in SDN today that

make these attacks feasible.

The first problem lies in the adversary model for the data

plane: all network devices are trusted to correctly follow the

specified network policies. Thus, the data plane lacks account-

ability mechanisms to verify that forwarding rules are correctly

applied. Specifically, it does not provide guarantees that the

policies will be followed (enforcement) nor proof that policies

have not been violated (validation). Once one or more switches

get compromised, forwarding policies can be violated without

getting caught by other switches or the controller.

Another problem is the lack of consistency guarantees when

the forwarding plane is reconfigured [11]. During reconfigura-

tions, packets can follow paths that do not comply with policy,

leading to link flooding or isolation violations in multitenant

environments. This is an inherent problem in distributed sys-

tems, because the new policy is correctly applied only after

all affected switches have been updated. However, an attacker

can exploit the problem by forcing reconfigurations through a

compromised switch.

Our goal is to build an SDN security extension which ensures

that the operator’s policies are correctly applied at the data

plane through forwarding accountability mechanisms. That is,

the extension should ensure consistent policy updates, enforce

network paths, and provide a means for operators to reactively

inspect how traffic has been forwarded.

There are only a few proposals dealing with SDN data-plane

security. A recent security analysis of OpenFlow [9] proposes

simple patch solutions (rate limiting, event filtering, and packet

dropping) to counter resource exhaustion attacks. SANE [12],

a pre-SDN era proposal, proposes a security architecture to

protect enterprise networks from malicious switches. However,

it lacks a validation mechanism to ensure that a path was indeed

followed; failure recovery is pushed to the end hosts. Another

class of proposals checks for policy violations by examining

certain network invariants; checking can be performed in real

time during network reconfigurations [3, 13, 14] or by explicitly

requesting the state of the data plane [15].

Contributions. This paper proposes an SDN security exten-

sion, SDNsec, to achieve forwarding accountability for the

SDN data plane. Consistent updates, path enforcement, and

path validation are achieved through additional information

carried in the packets. Cryptographic markings computed by

the controller and verified by the switches construct a path en-

forcement mechanism; and cryptographic markings computed

by the switches and verified by the controller construct a path

validation mechanism. Furthermore, we describe mechanisms

for secure failure recovery. Finally, we implement the SDNsec

data plane on software switches and show that state exhaustion

attacks are confined to the edge of the network.
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Fig. 1: Forms of path deviation attacks that do not follow

the authorized path from S to D.

Due to space constraints, we provide a more detailed de-

scription of SDNsec in an extended version [16].

II. PROBLEM DESCRIPTION

We consider a typical SDN network with a forwarding

plane that implements the operator’s network policies through a

logically centralized controller. Network policies of the operator

dictate which flows are authorized to access the network and

which paths are authorized to forward traffic for the correspond-

ing flows.

Our goal is to design an extension that makes a best-effort

attempt to enforce network policies at the forwarding plane, and

to detect and inform the controller in case of policy violations.

A. Adversary Model

The goal of the attacker is to subvert the network policies

of the operator (e.g., by forwarding traffic over unauthorized

paths) or to disrupt the communication between end hosts. To

this end, we consider the following attacks:

Path deviation. A switch causes packets of a flow to be for-

warded over a path that has not been authorized for the specific

flow. This attack can take the following forms (Figure 1):

• Path detour. A switch redirects a packet to deviate from

the original path, but later the packet returns to the correct

next-hop downstream switch.

• Path forging. A switch redirects a packet to deviate from the

original path, but the packet does not return to a downstream

switch of the original path.

• Path shortcut. A switch redirects a packet and skips other

switches on the path; the packet is forwarded only by a

subset of the intended switches.

Packet replay. A switch replays packet(s) to flood a host or

another switch.

Denial-of-Service. We consider state exhaustion attacks against

switches, which disrupt communication of end hosts.

We consider an adversary that can compromise infrastructure

components and hosts, and that can exploit protocol vulnera-

bilities. Furthermore, compromised components are allowed to

collude.

We do not consider payload modification attempts by

switches, as hosts do not trust the network and use end-to-end

integrity checks to detect any unauthorized changes. In addition,

controller security is out of the scope of this paper, since our

goal is to enforce the controller policies at the forwarding plane.

B. Assumptions

We make the following assumptions:

• Cryptographic primitives are secure, i.e., hash functions can-

not be inverted, signatures cannot be forged, and encryptions

cannot be broken.

• The communication channel between the controller and

benign switches is secure (e.g., TLS can be used, as in

OpenFlow [1]).

• End hosts are authenticated to the network (e.g., via port-

based Network Access Control [17]); hence, a malicious host

cannot spoof the identity of another host.

III. OVERVIEW

In SDNsec, the controller computes network paths and the

corresponding forwarding information. The switches at the edge

of the network receive this forwarding information over a secure

channel and embed it into packets that enter the network.

Switches at the core of the network forward packets according

to the forwarding information carried in the packets; and the last

switch on the path removes the embedded information before

forwarding the packet to the destination. Figure 2 shows the

network model for SDNsec. We stress that end hosts do not

perform any additional functionality (e.g., communicate with

the controller), i.e., the network stack of the hosts is unmodified.

A. Central Ideas

We identify three main problems that undermine network

policies in today’s SDN networks and describe our correspond-

ing design decisions.

Consistent Updates. In SDN, the distributed nature of updating

the forwarding plane can cause inconsistencies among switches.

Specifically, a new policy is correctly applied only after all

affected switches have been reconfigured; however, during state

changes the forwarding behavior may be ill-defined. Although

solutions have been proposed to counter this problem, they

require coordination between the controller and all the involved

switches in order to perform the updates [18, 19].

In SDNsec, packets encode the forwarding information for

the intended path. This approach guarantees that once a packet

enters the network, the path to be followed is fixed and cannot

change under normal operation (i.e., without link failures).

Hence, a packet cannot encounter a mixture of old and new

forwarding policies, leading to inconsistent network behavior.

Forwarding tables exist only at the entry and exit points of the

network, simplifying network reconfiguration: only the edge

of the network must be updated and coordination among all

forwarding devices is not needed.

The packet overhead we have to pay for this approach

provides additional benefits: guaranteed loop freedom, since we

eliminate asynchronous updates; and minimum state require-

ments for switches, since forwarding tables are not needed in

most of the switches (see Section III-C). The lack of forwarding

tables confines the threat of state exhaustion attacks.

Path Enforcement. In SDN, the controller cannot obtain

guarantees that the forwarding policies will be followed, since



the forwarding plane lacks enforcement mechanisms. Ideally,

when a switch forwards packets out of the wrong port, the

next-hop switch detects the violation and drops the packet.

We incorporate a security mechanism that protects the in-

tegrity of the forwarding information in order to detect devia-

tions from the intended path and drop the traffic. However, this

mechanism by itself is insufficient to protect from replaying

forwarding information that has been authorized for other flows.

Path Validation. In SDN, the controller has no knowledge of

the actual path that a packet has taken due to the lack of path

validation mechanisms.

We design a reactive security mechanism that checks if

the intended path was followed. The combination of path

enforcement and path validation provides protection against

strong colluding adversaries.

B. Controller

The controller consists of two main components: a path com-

putation component (PCC) and a path validation component

(PVC). Furthermore, the controller generates and shares a secret

key with every switch at the data plane; the shared key is

communicated over the secure communication channel between

them.

1) Path Computation Component: The PCC computes the

forwarding information for paths that are authorized for com-

munication. Specifically, for each flow that is generated, a

path is computed. We do not impose restrictions on the flow

specification; for interoperability with existing deployments, we

adopt the 13-tuple flow specification of OpenFlow [20].

The computed forwarding information for a flow is embed-

ded in every packet of the flow. For each switch on the path,

the PCC calculates the egress interface that the packet should

be forwarded on.1 Hence, the ordered list of interfaces specifies

the end-to-end path that the packets should follow. Furthermore,

each flow and its corresponding path is associated with an

expiration time (ExpTime) and a flow identifier (FlowID). The

expiration time denotes the time at which the flow becomes in-

valid, and the flow identifier is used to optimize flow monitoring

in the network (Section IV-C).

Furthermore, the forwarding information contains crypto-

graphic primitives that realize path enforcement. Each for-

warding entry (FE (Si)) for switch Si contains a Message

Authentication Code (MAC) that is computed over the egress

interface of the switch (egr(Si)), the flow information (ExpTime

and FlowID), and the forwarding entry of the previous switch

(FE(Si−1)); the MAC is computed with the shared key (Ki)

between the controller and the corresponding switch on the

path. Equation 1 and Figure 2 illustrate how the forwarding

information is computed recursively for switch Si (for 1 ≤ i ≤
n).

B = FlowID || ExpTime

FE(Si) = egr(Si) || MAC (Si)

MAC (Si) = MACKi
(egr(Si) || FE(Si−1) || B)

(1)

1We assume a unique numbering assignment for the ports of a switch.
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Fig. 2: The SDNsec network model: The ingress and egress

switches store forwarding tables; and the controller has a

shared secret with every switch at the data plane.

Furthermore, a forwarding entry for switch S0 is inserted into

the packet to be used by S1 for correct verification of its own

forwarding information; FE (S0) is not used by the first-hop

switch and is computed as follows: FE (S0) = B.

2) Path Validation Component: The PVC is a reactive secu-

rity mechanism that provides feedback/information about the

path that a packet has taken. The controller can then detect

attacks that have bypassed path enforcement and reconfigure

the network accordingly. Path validation is achieved through

two mechanisms: a path validation field in the packet and flow

monitoring.

Each switch embeds a proof in every packet that it has indeed

forwarded the packet. Hence, the collective proof from all on-

path switches forms a trace for the path that the packet has

taken. The controller can instruct any switch to report packet

headers and thus inspect the path that was taken.

The path validation field of a switch (PVF (Si)) contains

a MAC that is computed over the PVF of the previous

switch (PVF (Si−1)), flow related information (FlowID), and

a sequence number (SeqNo). The SeqNo is used to construct

mutable information per packet, ensuring different PVF values

for different packets; this detects replay attacks of the PVFs.

The MAC is computed with the shared key between the

switch and the controller2. Equation 2 shows how the PVF

is computed:

C = FlowID || SeqNo

PVF (S0) = MACK0
(C)

PVF (Si) = MACKi
(PVF (Si−1) || C), 1 ≤ i ≤ n

(2)

Given the FlowID and PVF in the packet header, the

controller can detect path deviations. The controller knows the

path for the given flow, and thus the keys of the switches on

the path. Thus, the controller can recompute the correct value

for the PVF and compare it with the reported one. However,

this mechanism cannot detect dishonest switches that do not

report all packet headers when requested.

Monitoring and flow statistics are additional mechanisms to

detect false reporting.3 The controller can instruct arbitrary

switches to monitor specific flows and obtain their packet coun-

ters. Inconsistent packet reports indicate potential misbehavior

and further investigation is required. For instance, if all switches

2For ease of exposition, the MAC of the PVF is computed with the same
key as the MAC of the FE. In a real deployment, these two keys would be
different.

3Monitoring is an essential tool for other crucial tasks as well (e.g., traffic
engineering).



after a certain point on the path report a lower packet count,

then packets were possibly dropped. However, if only a switch

in the middle of the path reports fewer packets, it indicates a

dishonest report. The controller combines flow monitoring with

the PVF in the packet headers to detect policy violations.

C. Data Plane

The data plane of SDNsec consists of edge and core switches

(Figure 2). Edge switches (shaded circles) operate at the edge

of the network and serve as the entry and exit points to the

network. Core switches operate in the middle of the network

and forward packets based on the forwarding information in

the packets.

1) Edge Switches: Edge switches are directly connected to

network hosts and perform different operations when acting as

an entry point (ingress switch) and when acting as an exit point

(egress switch). Edge switches, as opposed to core switches,

have flow tables in order to forward packets.

Ingress Switch. An ingress switch receives packets from source

hosts and uses a forwarding table to look up the list of forward-

ing entries for a specific flow. In case of a lookup failure, the

switch consults the controller and obtains the corresponding

forwarding information.

Next, the switch creates a packet header and inscribes the

forwarding information in it. Furthermore, for every packet of

a flow, the switch inscribes a sequence number to enable replay

detection of the PVF. Finally, the switch inscribes PVF (S0 ),
and forwards the packet to the next switch.

Egress Switch. An egress switch receives packets from a core

switch and forwards them to the destination. To forward a

packet, the egress switch uses a forwarding table in the same

way as the ingress switch.

Having a forwarding table at the egress switch is a design

decision that limits the size of forwarding tables at ingress

switches. It allows rule aggregation at ingress switches at the

granularity of an egress switch. Without a forwarding table at

the egress switch, a separate flow rule for every egress port of

an egress switch would be needed. The egress switch has the

egress interface encoded in its FE, but it does not consider it

when forwarding the packet; the FE is still used to verify the

correct operation of the previous hop.

Upon packet reception, the switch removes the additional

packet header and forwards the packet to the destination. If

requested, it reports the packet header, together with its PVF

to the controller.

2) Core Switches: Core switches operate in the middle of

the network and perform minimal operations per packet. They

verify the integrity of their corresponding forwarding entry

and forward the packet out of the specified interface. In case

of a verification failure, they drop the packet and notify the

controller.

Furthermore, each core switch stores a list of failover paths

that are used in case of a link failure (Section IV-B) and keeps

state only for flow monitoring (Section IV-C).

IV. DETAILS

First, we present the SDNsec packet header. Then, we

describe link-failure recovery and monitoring.

A. SDNsec Packet Header

The packet header (Figure 3) encodes the forwarding in-

formation (Equation 1), the PVF (Equation 2), and additional

information that enables the switches to parse the header (e.g., a

pointer to the correct forwarding entry). We present the packet-

header fields categorized by their use.

1) Fields for Forwarding and Path Enforcement:

• Packet Type(PktType): PktType indicates whether the

packet is a multicast/broadcast or a unicast packet. A single

bit is used as a boolean flag to indicate the packet type. We

describe multicast/broadcast forwarding in the long version

of the paper [16].

• FE Ptr: A pointer that points to the FE that a switch on the

path must examine. During packet processing, each switch

increments the pointer so that the next-hop switch examines

the correct FE. One byte is allocated for the FE Ptr, which

means that SDNsec can support up to 255 switches for

a single path. This upper bound does not raise practical

considerations even for large topologies, since the network

diameter is typically much shorter.

• Expiration Time (ExpTime): ExpTime is a timestamp after

which the flow becomes invalid. Switches discard packets

with expired forwarding information. ExpTime is expressed

at the granularity of one second, and the four bytes can

express up to 136 years.

• Forwarding Entry (FE): A FE for switch Si consists of

the egress interface of switch Si (egr(Si)) and the MAC

(MAC(Si)) that protects the integrity of the partial path that

leads up to the switch Si. One byte is used for egr(Si)
allowing each switch to have up to 255 interfaces; and 7

bytes are used for MAC(Si). In Section V-A, we justify why

a 7-byte MAC is sufficient to ensure path integrity.

2) Fields for Path Validation:

• Path Validation Field (PVF): Each switch that forwards

the packet inserts a cryptographic marking on the PVF

according to Equation 2, and the controller uses the PVF

for path validation. SDNsec reserves 8 bytes for PVF, and

in Section V-A, we justify that 8 bytes provide sufficient

protection against attacks.

• Sequence Number (SeqNo): The ingress switch maintains

a separate SeqNo for every flow entry. For every packet it

forwards, the switch increments the SeqNo for the flow that

the packet is part of and inserts the SeqNo in the packet.

The SeqNo is used to randomize the PVF and to detect

replay attacks against the Path Validation mechanism, in

which a malicious switch replays valid PVFs to validate a

rogue path. The 24-bit sequence number can identify more

than 16 million unique packets for a given flow. For the

average packet size of 850 bytes in data centers [21], the

24 bits suffice for a flow size of 13 GB; Benson et al.

report that the maximum flow size is less than 100 MB
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Fig. 3: SDNsec packet header for unicast traffic.

for the 10 data centers studied [22]. Hence, it is highly

unlikely that the sequence number wraps around. Even if the

sequence number wraps around, under normal operation the

same values would appear a few times, whereas in an attack

scenario typically a high repetition rate of certain values

would be observed.

• Flow ID (FlowID): The FlowID is an integer that uniquely

identifies a flow; and it is used to index flow information,

enabling SDNsec entities (controller and switches) to effi-

ciently search for flow information. Allocating 3 bytes for

FlowID is sufficient as it is possible to index over 16 million

flows with 3 bytes, while the number of active flows in data

centers typically do not exceed 100K [22].

3) Fields for Link-Failure Recovery:

• Link Failure Counter (LFC): LFC indicates the number

of failed links that a packet has encountered throughout

its journey towards the destination. SDNsec reserves 6 bits

for LFC, which means that up to 63 link failures can be

supported (see Section IV-B).

• Egress Switch ID (EgressID): The egress switch informa-

tion is necessary when a core switch suffers a link failure

and needs to determine an alternate path to the egress switch.

To this end, the SDNsec header contains the EgressID. With

2 bytes, it is possible to uniquely identify 65,536 switches,

which is sufficient even for large data centers.

B. Link-Failure Recovery

Our design decision that packets encode the forwarding

information for the intended path makes link-failure recovery

challenging: the intended path for packets that are already in the

network is no longer valid. One simple approach is to drop all

ill-fated packets. Although this approach does not compromise

the security guarantees, it degrades network availability. We

design a temporary solution to account for the ill-fated packets

until a new path is specified at the corresponding ingress

switches or until the failure is fixed. In the long version, we

describe packet forwarding and our design decisions for failover

paths in more detail [16].

Our recovery mechanism uses a failover path. A failover path

is a temporary path that detours around the failed link and leads

to the same egress switch as the original path. The forwarding

information of the failover path is encoded in the packet exactly

as for normal paths (as described in Equation 1). When a

FlowID EgressID SeqNo

ExpTime
FE
Ptr

A series of Original
Forwarding Entries (FEs)

PVF

FlowID EgressID SeqNo

ExpTime
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Ptr
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FailOverPathID Unused SeqNo
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Fig. 4: Modifications for link-failure recovery; additional

and modified fields are highlighted.

link failure is detected, the switch inserts the appropriate pre-

computed failover path into the packet and forwards the packet

to the appropriate next hop, as specified by the failover path.

Each switch on the failover path updates the PVF as it would

do for a normal path. Since the failover path is constructed

identically to the original path, the forwarding procedure (Sec-

tion III-C) needs only minor modifications (Section IV-B1).

This solution satisfies the security requirements for SDNsec.

First, update consistency is satisfied since the forwarding infor-

mation of the failover path is encoded in the SDNsec header.

Second, the authenticated forwarding information provides path

enforcement. Third, the controller can perform path validation

– including the failover path – with minor changes.

The failover paths may violate the isolation requirements for

certain flows. For example, the failover path to the egress switch

may traverse an area of the network that should be avoided for

specific flows. To this end, we define a do not detour flag. If

set, the switch drops the packet instead of using the failover

path. In other words, the flag indicates if security or availability

prevails in the face of a link failure. Note that failover paths

are temporary fixes to increase availability, while the controller

computes a permanent solution to respond to the failure.

1) Forwarding with Failover Paths: Packet Header. Fig-

ure 4 shows how a switch changes the packet header of an

ill-fated packet when a failover path is used. The FEs of

the original path are replaced with those of the failover path.

Furthermore, the switch changes the expiration time field with

ExpT imeFailoverPath and appends the information of the

failover path (i.e., FailoverPathID, SeqNo) below that of the

original path. Hence, the packet contains the flow information

of the original and the failover paths followed by the FEs of

the failover path.

Then, the switch resets FE Ptr to one, so that the next-hop

switch on the failover path can correctly determine the FE that

it needs to examine.

Lastly, the switch increments the LFC by one to indicate that

a link-failure has occurred. The LFC field counts the number

of failover paths that a packet has taken and enables multiple

link failures to be handled without additional complexity.

Forwarding Procedure. Two changes are made to the for-

warding procedure to accommodate link failures. First, since

additional forwarding information is inserted into the packet if

there is a detour, a switch identifies the correct FE by computing

the following byte offset from the beginning of the SDNsec

packet header: 6+ (LFC +2) ∗ 8+FEPtr ∗ 8 bytes. Second,

when computing the PVF, the switch uses Equation 3 if there



is a detour. FailOverPathID is determined by looking at the

FlowID field of the most recent forwarding information, which

is identified by taking the byte offset of 6 + LFC ∗ 8 bytes.

C = FailOverPathID || SeqNo (3)

C. Monitoring

Network monitoring is an essential tool for traffic engineer-

ing and security auditing. For instance, network operators can

steer traffic away from traffic hot spots or identify switches that

drop packets.

In SDNsec, monitoring is performed at the granularity of

a flow, similar to OpenFlow. Switches maintain a monitoring

table that stores packet counters for the flows that they serve.

Specifically, ingress switches have flow tables to look up the

FEs, hence, an additional field is required for packet counters.

Core switches need an additional data structure to accommodate

flow statistics.

Designing monitoring for the core network is based on

two principles. First, to prevent state exhaustion attacks the

controller instructs switches explicitly which flows they should

monitor. Since switches do not monitor all flows, an attacker

cannot generate flows randomly to exhaust the monitoring table.

Second, to minimize the impact of monitoring on forwarding

performance, we use an exact match lookup table: the FlowID

in the packet header serves as the key to the entry. Avoiding

more heavyweight lookups (e.g., longest prefix matching) that

require multiple memory accesses and often linear search oper-

ations (e.g., flow-table lookups in software switches) mitigates

attacks that target the computational complexity of the lookup

procedure.

V. SECURITY ANALYSIS

We start by justifying our design choice of short MACs,

and then we describe how SDNsec protects from the attacks

described in Section II-A.

A. On the length of MACs

The path enforcement and path validation mechanisms re-

quire MAC computations and verifications at every switch. We

argue that the length of the MACs – 7 bytes for FEs and 8 bytes

for the PVF – is sufficient to provide the security guarantees

we seek.

The main idea is that the secret keys used by other switches

are not known to the attacker, which means that an attacker

can at best randomly generate MACs without a way to check

their validity. Consequently, the attacker would have to inject

an immense amount of traffic even for a single valid FE

(256 attempts are required). Furthermore, to forge FEs for n

hops requires 256·n attempts, which becomes computationally

infeasible even for n = 2. Hence, such traffic injection with

incorrect MACs is easily detectable.

B. Path Deviation Attacks

Path deviation attacks – in which packets follow a path not

authorized by the controller – can take different forms, as

described in Section II-A.

The security properties of chained MACs with respect to path

validation have been formalized and verified for a decentralized

setting [23]. The centralized control in SDN simplifies key

management, since the controller sets up the shared symmetric

keys with the switches; sophisticated key-establishment proto-

cols are not needed. However, an important difference is that

we consider the ingress and egress switch – not the hosts –

as the source and destination, respectively. In Section VII, we

discuss the security implications of this decision.

Path enforcement is the first line of defense against path

deviation attacks. It prevents path forging and path detours

from a malicious switch that generates forged FEs. The next

benign switch on the path will drop the packet due to a MAC

verification failure. However, a more sophisticated attacker can

replay forwarding information of other paths that it is part of,

but which are not authorized for the diverted flow.

Path validation is the second line of defense against path

deviation attacks. Since each switch is inscribing a MAC

value in the packet, the packet carries information about the

presence or absence of switches on the path. The controller

can reactively inspect this information and obtain a guarantee

about the traversed switches and their order. SDNsec provides

this guarantee because the attacker does not possess the secret

keys of other switches. Note that path validation also catches

attacks from malicious ingress switches that embed in the

packets FEs of other flows. The controller knows the forwarding

information for every flow (based on the flow tuple) and can

detect the misbehavior. Changing the information that defines

a flow would break communication between the end hosts;

Section VII discusses such cases in more detail.

Furthermore, sequence numbers are used to prevent replay

of the path validation information. A malicious switch could

replace the PVF value in a packet with a value from a

previously seen packet, obfuscating the actual path taken by the

packet to avoid being detected by the controller. The replay is

detected through a high repetition frequency of certain sequence

numbers; under normal operation each sequence number would

appear at most a few times (Section IV-A).

The path enforcement and validation properties of SDNsec

can be compromised in the case of multiple adjacent malicious

switches. For example, if a malicious on-path switch has

multiple malicious adjacent switches (not on the path), then

the packets can be forwarded along the malicious path segment

and back. The on-path malicious switch can then reinject the

packets along the initial intended path; this attack cannot be

detected, as pointed out by prior work [23].

C. Denial-of-Service

Network devices typically store state (e.g., forwarding tables)

on fast memory (e.g., SRAM), which is a limited resource. This



becomes the target of attackers by populating the memory with

bogus data that replaces legitimate information.

In SDNsec, the state exhaustion attack vector is confined to

the edge of the network. Only edge switches keep forwarding

tables and thus they are susceptible to a state exhaustion attack

by malicious hosts that originate bogus flows. In Section VI-C2,

we compare the performance between an edge switch and a core

switch under a state exhaustion attack.

Furthermore, each switch keeps state to monitor forwarded

traffic at the granularity of flows. An attacker could generate

random flow IDs in order to exhaust the monitoring table.

This resource is protected by having the switches monitor only

flow IDs that the controller mandates. Thus, the controller

can securely adapt the resources according to the device’s

capabilities.

VI. IMPLEMENTATION AND EVALUATION

We implement the SDNsec data-plane functionality on a

software switch, and evaluate performance on a commodity

server machine. Furthermore, we analyze the path validation

and bandwidth overhead for the network.

A. Software Switch Prototype

To achieve high performance, our implementation leverages

the Data Plane Development Kit (DPDK) [24] and the Intel

AES-NI instruction set [25]. DPDK is an open-source set of

libraries and drivers for packet processing in user space. DPDK

comes with zero-copy Network Interface Card (NIC) drivers

that leverage polling to avoid unnecessary interrupts. Intel

AES-NI is an instruction set that uses hardware cryptographic

engines built into the CPU to speed up the AES block cipher.

To compute and verify the required MACs, we use the Cipher

Block Chaining mode (CBC-MAC) with AES as the block

cipher. The input lengths to the MACs for a FE and PVF are

15 and 14 bytes respectively. Note that for both cases the input

fits in one AES block (16 bytes) and that the input length is

fixed and independent of the path length4. Furthermore, we use

128-bit encryption keys and truncate the output to the required

number of bits (Section IV-A).

Furthermore, we optimize forwarding in the following

ways. First, we store four FEs in different xmm registers

(xmm0-xmm3) and issue four encryption instructions with the

preloaded round key (stored in xmm4). Since each AES engine

can simultaneously perform 4 AES operations, a switch can

process four packets in parallel on each CPU core.

Second, a dedicated CPU core is assigned to a NIC port and

handles all the required packet processing for the port. Each

physical core has a dedicated AES-NI engine and thus packets

received on one port are served from the AES-NI engine of the

physical core assigned to that port.

Third, we create per-core data structures to avoid unnecessary

cache misses. Each NIC is linked with a receive queue and a

transmit queue, and these queues are assigned to a CPU core to

handle the NIC’s traffic. Furthermore, we load balance traffic

4CBC-MAC is vulnerable when used for variable-length messages

Packet Size
200 B 850 B 1400 B

Leaf-Spine 19.0% 4.5% 2.7%
3-Tier 27.0% 6.4% 3.9%

TABLE I: Packet overhead for data center traffic patterns

and topologies.

from one NIC over multiple cores, depending on the system’s

hardware. For this purpose, we leverage Receiver Side Scaling

(RSS) [26] as follows: each NIC is assigned multiple queues,

and each queue can be handled by another core. RSS is then

used to distribute traffic among the queues of a NIC.

Our implementation of the edge switch is based on the

DPDK vSwitch [27]. The DPDK vSwitch is a fork of the open

source vSwitch [28] running on DPDK for better performance.

Open vSwitch is a multilayer switch that is used to build

programmable networks and can run within a hypervisor or as

a standalone control stack for switching devices. Edge switches

in SDNsec use the typical flow matching rules and forwarding

tables to forward a packet and therefore we chose to augment

an existing production quality solution. We augment the lookup

table to store forwarding information for a flow in addition

to the output port. The ingress switch increases the size of

the packet header and inputs the additional information (FEs,

sequence number, and its PVF).

We implement core switches from scratch due to the minimal

functionality they perform. A core switch performs two MAC

computations (it verifies its FE and computes its PVF value),

updates the flow’s counters (if the flow is monitored), and

forwards the packet from the specified port.

B. Packet Overhead

The security properties of SDNsec come at the cost of

increased packet size. For each packet, the ingress switch

creates an additional packet header with its size depending on

the path length: a fixed cost of 22 bytes and a variable cost of

8 bytes-per-switch (including the egress switch).

To put the packet overhead into context, we analyze two

deployment scenarios for SDNsec: a data-center deployment

and a research network deployment. Furthermore, to evaluate

the worst case for SDNsec, we consider the diameter of the

network topologies, i.e., the longest shortest path between any

two nodes in the network. We also evaluate the packet overhead

for the average path length in the research-network case.

For the data-center case, we consider two common data cen-

ter topologies: a leaf-spine topology [29] and a 3-tier topology

(access, aggregation, and core layer) [30]. The diameter for the

leaf-spine topology is 4 links (i.e., 3 switches) and for the 3-

tier topology 6 links (i.e., 5 switches)5. In addition, to relate

the overhead to realistic data center traffic, we use the findings

of two studies: the average packet size in data centers is 850

bytes [21], and packet sizes are concentrated around the values

of 200 and 1400 bytes [22]. Table I shows the overhead for the

different topologies and path lengths.

5Our reported path lengths include the links between the hosts and the
switches.



Trace 1 Trace 2 Trace 3
747 B 463 B 906 B 1420 B 691 B 262 B

A 8.3% 13.4% 6.8% 4.4% 9.0% 23.7%
D 12.6% 20.3% 10.4% 6.6% 14.0% 35.9%

TABLE II: Packet overhead for the average path length

(A) and the diameter (D) of the Internet2 topology and

the mean and median packet sizes from 3 CAIDA 1-hour

packet traces.

For the research network deployment, we analyze the topol-

ogy of the Internet2 network [31], which is publicly avail-

able [32]; we consider only the 17 L3 and 34 L2 devices

in the topology – excluding the L1 optical repeaters – and

find a diameter of 11 links (i.e., 10 switches). Furthermore,

for the Internet2 topology we calculate an average path length

of 6.62 links (i.e., 6 switches). To relate the overhead to actual

traffic, we analyze three 1-hour packet traces from CAIDA [33]

and calculate the respective packet overhead for the mean and

median packet lengths. (Table II).

Our results indicate a moderate packet overhead for the aver-

age path length in Internet2 and a considerable packet overhead

for the worst case (high path lengths) in both deployment

scenarios. This analysis provides an insight about the price of

security and robustness for policy enforcement and validation of

the SDN data plane. Furthermore, we observe that the packet

overhead is more significant for ISP topologies because they

have typically longer paths than data center networks: data

center networks are optimized with respect to latency and

cabling length leading to shorter path lengths. Novel data center

topologies demonstrate even shorter path lengths compared to

the more common topologies we analyzed [34, 35]. This path-

length optimization leads to a lower packet overhead for a data-

center deployment of SDNsec.

C. Performance Evaluation

We compare the forwarding performance of edge and core

switches with the DPDK vSwitch under two scenarios: normal

operation and a state exhaustion attack.

We run the SDNsec software switch on a commodity

server machine. The server has a non-uniform memory access

(NUMA) design with two Intel Xeon E5-2680 CPUs that com-

municate over two QPI links. Each NUMA node is equipped

with four banks of 16 GB DD3 RAM. Furthermore, the server

has 2 dual-port 10 GbE NICs (PCIe Gen2x8) providing a

unidirectional capacity of 40 Gbps.

We utilize Spirent SPT-N4U-220 to generate traffic. We spec-

ify IPv4 as the network-layer protocol, and we vary Ethernet

packet sizes from 128 to 1500 bytes.6 For a given link capacity,

the packet size determines the packet rate and hence the load on

the switch. For example, for 128-byte packets and one 10 GbE

link, the maximum packet rate is 8.45 Million packets per

second (Mpps); for all 8 NIC ports it is 67.6 Mpps. These

values are the physical limits and represent the theoretical peak

throughput.

6We exclude 64-byte packets because the minimum packet size in the core
of the network is higher because the additional information in SDNsec does
not fit in the minimum-sized Ethernet packet.
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Fig. 5: Switching performance under normal operation.

Furthermore, for the SDNsec edge switch and the DPDK

vSwitch, we populate a flow table with 64k entries; for the

SDNsec edge switch, the flow table holds forwarding entries

for a path with 5 switches. Flows are defined based on the

destination MAC address – all other fields remain constant.

1) Normal Operation: For normal operation, we generate

packets with a destination MAC address in the range of the

addresses stored in the flow table of the switch. Figure 5b

shows the average latency per packet, and Figure 5a shows the

switching performance for a 60-second measurement interval.

The ingress switch demonstrates a higher latency compared

to DPDK vSwitch because the SDNsec header must be added

to every packet: the packet size increases and the longer entries

in the lookup table cause additional cache misses that increase

latency. However, the latency of the core switch is the same

as the DPDK baseline latency, demonstrating the minimal

processing overhead at the core switches.

We observe a considerable performance decrease for the

ingress switch compared to the DPDK vSwitch. This decrease

is a side-effect of the packet overhead (Section VI-B): the

outgoing traffic volume of an ingress switch is higher than

the incoming volume. Thus, when the incoming links are

fully utilized, packets get dropped and the throughput is lower

(assuming that the aggregate ingress and egress capacity of the

switch is the same). This comparison captures the effect of

packet overhead and not the processing overhead. In contrast

to the ingress switch, the core switch outperforms the other

switches and achieves the baseline performance.

Our experiments under normal operation demonstrate a per-

formance decrease at the edge of the network, however, the core

of the network can handle more traffic, compared to today’s

SDN realization.

2) State Exhaustion Attack: To analyze the switching per-

formance of the switch under a state exhaustion attack, we

generate traffic with random destination MAC addresses. The

destination addresses are randomly drawn from a pool of 232

(∼4 billion) addresses to prevent the switches from performing

any optimization, such as caching flow information. Figure 6

shows the switching performances.

We observe a considerable decrease (i.e., over 100 times

slower than the DPDK baseline) in throughput for both the

DPDK vSwitch and the ingress switch (Figure 6a). This de-

crease is due to cache misses when performing flow table

lookups–the switches are forced to perform memory lookups,
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Fig. 6: Switching performance under state exhaustion.

which are considerably slower than cache lookups, in order to

determine the forwarding information to process the incoming

packets. The latency plot in Figure 6b tells a similar story: both

the DPDK vSwitch and the ingress switch take considerably

longer time to process packets.

However, for the core switches the switching performance

remains unaffected compared to normal operation. This is

because the core switches do not perform any memory lookup

when processing packets.

D. Path Validation Overhead

Path validation introduces processing overhead for the con-

troller, since it has to recompute the PVFs for the reported

packets.

We estimate the overhead based on information for large data

centers: 80k hosts [36] with 10G access links that are utilized

at 1% (in each direction) [37] and send average-sized packets

of 850 bytes [21]. Due to lack of knowledge for traffic patterns,

we consider the worst case: all traffic is inter-rack and the path

consists of 5 switches (worst-case path length for 3-tier data

center); also, all egress switches report all the packet headers.

Overall, the aggregate packet rate for this setup is 1176 Mpps.

We implement the PVC, which reads the packet headers,

fetches the corresponding shared keys with the switches, and

recomputes the PVFs. For the previous setup, an 8 core

CPU can validate 8.5 Mpps. For the whole data-center traffic

(1176 Mpps), 138 CPUs would be required; MAC verifications

scale linearly with the number of CPUs.

VII. DISCUSSION

One unconsidered attack is packet dropping by a malicious

switch. Flow statistics through monitoring provide a basic

defense perimeter for such attacks. The controller can instruct

switches to periodically report packet counters for certain flows

and then inspect if packets are dropped at a certain link. Fur-

thermore, dishonest reports would result in inconsistent reports

that pinpoint the misbehavior to a certain link between two

switches (it is not possible to identify the exact switch) [38].

However, packet dropping from a malicious ingress or egress

switch cannot be detected through monitoring. This is the side-

effect of a design decision in SDNsec.

We have made the deliberate design decision that the network

stack of the host should not be modified. This design choice

provides a smoother incremental deployment path for SDNsec,

since hosts do not perform any additional functionality. This

can be beneficial also for a data-center deployment, when

tenants have control over their operating system (e.g., in the

Infrastructure-as-a-Service model).

This design decision, however, has implications for the

security properties of SDNsec and enables certain attacks.

For example, a malicious egress switch can transfer packets

out of an incorrect interface, replay packets, or drop packets;

without feedback from the end host it is not possible to

detect such attacks. Furthermore, a malicious ingress switch

can replay packets undetected, since the ingress switch can

inscribe different sequence numbers; again, the transport layer

of the destination host—and not the network—can detect the

replay.

VIII. RELATED WORK

We briefly describe recent research proposals that are related

to data-plane security and state reduction in SDN.

Data-plane security. There are only a few proposals account-

ing for compromised switches at the data plane. The most

closely related work to ours is SANE [12]: the controller

hands out capabilities to end hosts – not to switches, as in

SDNsec – in order to enforce network paths. This approach

requires modification of end hosts in order to perform additional

tasks. Namely, every host must communicate with the controller

in order to establish a shared symmetric key and obtain capabil-

ities. Failure recovery is pushed to the host, which has to detect

the failure and then explicitly ask the controller for a new path.

In addition, SANE cannot provide protection against stronger

adversaries that collude and perform a wormhole attack: a

malicious switch can replay capabilities by prepending them to

the existing forwarding information in the packet and thus can

diverge traffic over another path; a colluding switch removes the

prepended capabilities and forwards packets to a downstream

switch of the original path. SDNsec provides path validation to

deal with such attacks.

OPT [39] and ICING [40] are path validation protocols that

leverage cryptographic information in the packets. OPT uses a

dynamic key-establishment protocol that enables routers to re-

create symmetric keys with end hosts. In ICING, each router

on the path verifies cryptographic markings in the packet that

were inserted by the source and each upstream router. Note

that these proposals involve the end host and provide stronger

security properties than SDNsec, which come at the cost of

complicated key management and a high packet overhead.

State reduction for SDN. Another class of proposals focuses

on state reduction for the SDN data plane. Source routing is a

commonly used approach to realize this goal, and recent work

shows that source routing not only decreases the forwarding

table size, but provides a higher and more flexible resource

utiliziation [41]. In SourceFlow [42], packets carry pointers

to action lists for every core switch on the path. Segment

Routing [43] is based on source routing and combines the

benefits of MPLS [44] with the centralized control of SDN.

The use of source routing without corresponding security

mechanisms opens a bigger attack vector compared to legacy

hop-by-hop routing: a single compromised switch can modify



the forwarding information and steer a packet over a non-

compliant path.

IX. CONCLUSION

Security in SDN remains a neglected issue and could raise

deployment hurdles for security concerned environments. We

have presented a security extension to achieve forwarding

accountability for the SDN data plane, i.e., to ensure that the

operator’s policies are correctly applied to the data plane. To

this end, we have designed two mechanisms: path enforcement

to ensure that the switches forward the packets based on the

instructions of the operator and path validation to allow the

operator to reactively verify that the data plane has followed the

specified policies. In addition, SDNsec guarantees consistent

policy updates such that the behavior of the data plane is well

defined during reconfigurations. Lastly, minimizing the amount

of state at the core switches confines state exhaustion attacks

to the network edge. We hope that this work assists in moving

towards more secure SDN deployments.
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