
Network Fault Localization with Small TCB
Xin Zhang, Zongwei Zhou, Geoff Hasker, Adrian Perrig and Virgil Gligor

{xzhang1, zongweiz, hasker, perrig, gligor}@cmu.edu
Carnegie Mellon University

Abstract—Clear evidence indicates the existence of compro-
mised routers in ISP and enterprise networks. Fault localization
(FL) protocols enable a network to localize specific links of
compromised routers sabotaging network data delivery and are
recognized as an essential means to enhancing network availabil-
ity in the face of targeted attacks. However, theoretically proven
lower bounds have shown that secure FL protocols in thecurrent
network infrastructure inevitably incur prohibitive overhead. We
observe the current limits are due to alack of trust relationships
among network nodes. We demonstrate that we can achieve much
higher FL efficiency by leveraging trusted computing technology
to design a trusted network-layer architecture, TrueNet, with
a small Trusted Computing Base (TCB). We intendTrueNet

to serve as a case study that demonstrates trusted computing’s
ability in yielding tangible and measurable benefits for secure
network protocol designs.

I. I NTRODUCTION

ISP and enterprise networks demand reliable data delivery
to support performance-critical services, thus requiringthe
data plane to correctly forward packets along routing paths.
However, real-world incidents [2], [4], [6], [23], [28], [42]
reveal the existence of compromised routers in ISP and en-
terprise networks sabotaging network data delivery. Also,in a
2010 worldwide security survey [1], 61% network operators
ranked infrastructure outages due to misconfigured network
equipment such as routers as the No. 2 security threat.Fault
localization(FL), which identifiesfaulty linksof compromised
or misconfigured routers that suppress or forge packets during
forwarding, is recognized as a key building block for achieving
reliable data delivery [7], [9], [10], [12], [24], [30], [34], [35],
[47]: by removing the identified faulty links from the network,
end-to-end communication carries on via non-faulty paths.

Barak et al. recently proved the lower bound overhead of
secure FL protocols in thecurrentnetwork infrastructure [12],
which is impractical for large-scale ISP/enterprise/datacenter
networks. Specifically, the lower bound states that a router
must share some secret (e.g., cryptographic keys) with each
source sending traffic traversing that router, making the key
storage overhead at an intermediate routerlinear in the number
of end nodes. In addition, secure FL protocols run at the
granularity of entire end-to-end paths, requiring each inter-
mediate router to storeper-path stateand the paths to be

This research was supported by CyLab at Carnegie Mellon under grants
DAAD19-02-1-0389, W911NF-09-1-0273, and MURI W 911 NF 0710287
from the Army Research Office, and by support from NSF under theawards
CNS-0831440 and CNS-1040801. The views and conclusions contained
here are those of the authors and should not be interpreted asnecessarily
representing the official policies or endorsements, either express or implied,
of ARO, CMU, NSF or the U.S. Government or any of its agencies.

long-lived (e.g., transmitting at least106 packets, which would
hinder agile load-balancing and traffic engineering) [12],[47].
These fundamental limitations exist in traditional network
infrastructure due to the lack ofany trust relationshipsamong
nodes. Hence, a source node needs todirectlycheck or monitor
all intermediate routers (thus sharing secret keys and state) in
the routing path to ensure the routers behave correctly.

Furthermore, in existing secure FL protocols, a noden

which detects a faulty linkl can only removel from n’s
local routing table but cannot share the detection result with
other nodes, otherwise a potentially maliciousn make false
accusation of other benign links (slander attacks). This re-
tards thenetwork-widedetection/failure recovery process, and
causes inconsistent routing tables at different nodes (faulty
links excluded from the routing tables of some but not all
nodes). Inconsistent routing tables violate the requirements of
certain routing protocols such as link-state routing. The lack
of trust among network nodes also inhibits the global sharing
of local detection result.

In light of the secure FL limitations in current network
infrastructures, we explore how trusted computing technology
can enable a network architecture with intrinsictrust of
correct data deliveryamong nodes with fundamentally better
performance than the proven boundaries [12] in a traditional
network architecture. Our key insight is thatremote code
attestation provided by trusted computing enables a node
to verify if a remote communicating node runs a trusted
(or expected) version of software/protocol via authenticated
“code measurements”.Isolation further ensures that critical
code execution and data are isolated from all other code
and devices on the local system. Jointly, these properties
provide transitivity of verification , i.e.: if A verifies B’s
code integrity (via attestation and isolation) andB verifies
C, then A believes inC ’s code integrity as well without
needing to verifyC ’s code integrity, becauseA knowsB’s
code has correctly verifiedC. Transitivity of verification,
when applied to secure network protocol designs, enables
each node to perform verification and monitoringonly with
1-hop neighbors, building achainof verification over theend-
to-end path with reduced overhead, i.e., only requiringper-
neighbor (as opposed to per-node or per-path) state at each
router. In short, transitivity of verification eliminates the need
of establishingdirect point-to-pointvalidation between any
two nodes in the network which incurs high storage overhead
and obstructs key management.

Though useful, current trusted computing technologies are
by no means a panacea when directly applied to the realm

of computer networks. Although several researchers propose
Trusted Platform Module (TPM)-based protocols for secur-
ing general distributed systems (e.g., BIND [39]) and spe-
cific network applications (e.g., Not-a-Bot [22]), fundamental
challenges render these approaches ineffective in securing
data delivery at the network layer: (i) existing approaches
cannot “attest” raw command-line configuration for which
an expected “measurement” for remote attestation is hard to
define, (ii) the extensive network stack would swell the size
of the Trusted Computing Base (TCB) and it is challenging
to abstract a small-sized, invariant “critical code”, and (iii) a
large ISP network can contain different routing instances with
different implementation versions [29], which obstructs the use
of a consistent “code measurement” for attestation.

The TrueNet design answers these challenges of applying
trusted computing. Instead of strictly attesting thesemanticsof
the huge, intertwined network stack itself,TrueNet attests the
behaviorof the network stack, i.e., whether it has successfully
delivered the data or not. On one hand, the success of data
delivery guarantees thatall of the network-layer components
have worked correctly, regardless of their implementation
variations. On the other hand, ifany of the network-layer
components misbehaves, failures will arise in data delivery
by which the faulty link(s) can be detected. Correspondingly,
our approach inTrueNet is to monitor 1-hop data delivery
behavior (behavior of the network-layer protocol stack) with
a smallmonitoring module as the critical code at each hop,
and attest, isolate, and protect only the particular monitoring
module with trusted computing. Thus,TrueNet requires only
a small amount of critical code (the small monitoring module)
as the TCB. Such a small TCB size (i) supports different
network stack implementations and flexible protocol updates,
(ii) makes the attestation of the small critical code efficient,
and (iii) enables applying formal analysis [17] on the small
critical code to ensure the TCB is indeed trustworthy.

The small TCB on eachTrueNet router forms alogical
protected pathoverlayed on the physical machines and an
untrusted network stack between a source and destination,
along which data delivery is monitored and ensured. As a
result,TrueNet achieves efficient FL withsmall router state
(only per-neighbor state), support fordynamic/short-lived
paths (no requirements on the minimum number of packets
transmitted along a path since monitoring is performed only
between neighbors), andglobal sharing of detection results
while eliminating slander attacks. As a proof of concept,
we implement aTrueNet prototype in Linux using existing
trusted computing technology and a TPM, and demonstrate
that TrueNet provides high throughput while achieving the
desired security properties. We also launch real trace-based
measurements to show that the router state inTrueNet is up
to five orders of magnitude less than related work [12], [47].

Contributions. We design, implement, and evaluateTrueNet,
which, assuming trusted hardware, achieves secure FL with
properties (i.e., per-neighbor router state, dynamic pathsup-
port, and global sharing of FL results while avoiding slander or

framing attacks) that invalidate the previously proven perfor-
mance boundaries in traditional networks [12].TrueNet still
provides benefits for partial adoption, enabling incremental
deployment, and can be deployed in inter-domain settings
with the recently proposed SCION architecture [46]. Finally,
TrueNet explores the role trusted computing might play in
securing network protocols, shows the possibility of using
trusted computing to break traditional performance boundaries,
and could spark future research.

II. PROBLEM STATEMENT

We study thenetwork layerfor an ISP, enterprise, or dat-
acenter network under a single administrative domain, where
an administrator exists for configuring network nodes when
necessary (e.g., installing public keys on the nodes, etc).We
consider a router-level topology, where anoderefers to a router
and particularly asource(destination) refers to a source (sink)
router. We denote the monitoring module at a routerA as
MM A and a link between routersA andB as lAB . TrueNet
aims to achieve secure FL as follows.

Definition 1: We denote byδAB = {δd
AB , δ

f
AB} the number

of original packets dropped and misrouted (δd
AB), andthe num-

ber of packets injected, modified, and reordered (δ
f
AB) on lAB .

A link lAB is faulty if δAB is larger than a certainaccusation
threshold{T d, T f} set by the network administrator, i.e.:

δd
AB > T d, or δ

f
AB > T f . (1)

Definition 2: Aggregate FL is achieved iffgiven a routing
path p, δAB can be accurately learned for each linklAB in
p. Per-packet FL is achieved iffgiven the routing pathp the
failure of delivering a single packet inp can be immediately
localized to a specific link inp.

Adversary Model. We follow the trusted computing literature
and assume the adversary can compromise the router OS,
install malware on the routers, and launch remote software-
based attacks; but the adversary cannot compromise hard-
ware or manipulate the physical network infrastructure, nor
defeat trusted computing primitives (code attestation andiso-
lation). Such a remote attacker model is consistent with real-
world router-based attacks. For example, most documented
router compromises in ISP and enterprise networks are due
to phishing [4] and remote exploitation of router software
vulnerabilities [2], [6] and weak passwords [23] by remote
hackers [42]. In addition, a majority of network operators
in a recent security survey [1] listedrouter misconfiguration,
which also falls under our software-based attack model, as an
important cause of outages; and documented router software
misconfiguration has led to network partitioning [28]. Finally,
software-based attacks are usually more stealthy and large-
scale than hardware-based attacks, since a hardware-based
attacker usually needs physical proximity to targeted routers
and will likely leave physical evidence, making the attack more
auditable and less scalable.

The adversary controls multiple malicious routers which
can drop, modify, inject, reorder, and misroute packets on

links incident to malicious nodes in control. Furthermore,
the adversary can launchcollusion attacks where multiple
malicious routers can coordinate and conspire to evade FL
or incriminate a benign link. However, the adversary has
polynomially bounded computational power and cannot break
cryptographic primitives.

Scope. TrueNet focuses on achieving secure FL against
malicious routers. We do not consider control-plane or routing
attacks and endhost- or source-based attacks such as DoS,
while TrueNet complements existing secure routing [15],
[16], [20] or DoS prevention schemes [43], [45]. In addition,
TrueNet aims to demonstrate via secure FL the fundamental
benefits trusted computing offers to secure network protocols,
and we anticipate future work will utilize trusted computing to
solve other network security problems including DoS attacks.

III. F UNDAMENTAL CHALLENGES

We further elaborate on the fundamental challenges in
directly applying code attestation and isolation to securedata
delivery in large-scale networks.
Large protocol stack. The network layer contains numerous
interacting software components, i.e., (i) topology discovery,
(ii) path selection from the topology, (iii) converting routing
tables to forwarding tables, (iv) forwarding table lookup,etc.
The incorrect operation ofany of these components will
hamper the correctness of the eventual network data delivery;
therefore, straightforward attestation of the entire protocol
stack would require attesting tens of thousands of lines of
code. For example, the IPv4 subsystem in the Linux 2.6.37
kernel contains more than 66K lines of code, and the IP-related
elements in the Click modular router [27] contain more than
15K lines of code. This swells the TCB size and thus broadens
the surface for potential vulnerabilities.

Diverse implementations and complex dependencies.In
practice, there can be many co-existing protocol implemen-
tations and instances [29] within the same large ISP or enter-
prise network. Furthermore, due to the intrinsic and obscure
interactions between network-layer components, it is highly
challenging to distill an invariant, small, infrequently updated
critical code as TCB to be attested.

Securing raw user input/configuration. In addition to the
network protocol stack, data delivery also depends on human
command-line input and configuration. Unfortunately, user
configurations are hard to attest due to the flexibility of the
configuration language, but can be utilized by the attackers
to launch attacks to sabotage data delivery. Since the current
Cisco IOS provides rich command-line interfaces to drop and
alter packets, an attacker can cause damage without even
modifying the network stack.

Hence in this paper, we strive to address these challenges by
ascertainingthe minimal, invariant critical code for securing
network data-plane packet delivery, along with its minimal
configuration parameters.

IV. D ESIGN BUILDING BLOCKS

Remote attestation, isolation, and sealed storage are the
high-level primitives that trusted computing offers pertaining
to our purpose of securing network data delivery.

Trusted computing primitives. By remotelyattestinga se-
lected piece of “critical code”, a nodeX can verify if a remote
nodeY is executing the expected, correct version of the critical
code. In conjunction withisolation, attestation can ensure
that the execution of the critical code occurs untampered
by any potentially present malicious code including the OS.
Specifically, with attestation of the 1-hop monitoring module
as the critical code inTrueNet, a nodeX can convince another
node Y that X is indeed executing the correct monitoring
module in an isolated fashion. Furthermore, sealed storage
binds a piece of sensitive data to a particular piece of software,
ensuring that only the software that originally sealed the data
accesses it. InTrueNet, sealed storage can seal a monitoring
module’s secret keys so that only thesamemonitoring module
can access the secrets.

These trusted computing primitives have been widely de-
ployed on commodity computers [21], [25]. In the remainder
of the paper, we first use these trusted computing primitives
conceptuallyfor presenting theTrueNet protocol. Then we
delineate and implement aTrueNet router architecture in-
corporating the trusted computing primitives in Sections X
and XI.

Security properties. Remote attestation and sealed storage
can be used to set upsecure channelsand transitivity of
monitoring resultsas the security properties leveraged by
TrueNet for efficiently achieving FL.

1) Secure channel:The above trusted computing primitives
enable a monitoring module MMA to generate and convey its
public key to a remote MMB [33], based on which MMA
and MMB can establish a shared secret key. By performing
cryptographic operations using the secret keyssealedand only
known by the trusted monitoring modules at network routers,
a compromised router OS or malware cannot impersonate the
monitoring module by forging signatures or performing en-
cryption/decryption based on those sealed keys. This builds a
secure communication channel among the monitoring modules
at different routers.

2) Transitivity of monitoring results:End-to-end monitoring
can now be achieved via a chain of 1-hop monitoring between
every two adjacent neighbors while eliminating slander and
collusion attacks. This is because if a nodeX verifies via
code attestation that its neighborY is executing the correct
monitoring module MMY , X knows that the monitoring re-
sults reported by MMY are correct, and that MMY is correctly
monitoringY ’s neighbor, which recursively ensures the entire
end-to-end path is being correctly monitored.

V. TrueNet OVERVIEW

We give an overview ofTrueNet with Figure 1 as an exam-
ple topology. The shaded areas denote the monitoring modules
isolated and protected by trusted computing at each router and

 network

stack

S A B C D

 network

stack

 network

stack

 network

stack

 network

stack

actual packet path

logical protected path

MMS MMA MMB MMC MMD

Fig. 1. An example topology to illustrate the operation ofTrueNet. The
solid line represents the logical protected path of packetsimplemented by the
secure channels between the trusted monitoring modules.

thus reside in the TCB.A router’s network stack (including
the OS, network interfaces, and other related programs) is
untrusted.

The logical protected path. In TrueNet, each packet is
supposedto pass through the monitoring module MMi at each
hop i. The MMs on the logical path are protected by trusted
computing mechanisms and are thus trusted. The dashed line
in Figure 1 depicts theactual packet path comprising the
physical machines and network stack, originated from nodeS

and destined toD. In contrast, thesecure channelsbetween
adjacent trusted monitoring modules along the actual packet
path form alogical protected pathoverlayed on the untrusted
network stack. Every two neighboring MMA and MMB on the
logical protected path share a secret keyKAB that is sealed by
and only accessible to the same MMA or MMB . Nodes (i.e.,
monitoring modules) in the logical protected path can thus
communicate withsecrecyand authenticityusing the shared
and sealed secret keys, and the untrusted network stack cannot
inject or forge authenticated messages in the logical protected
path. Nodes in the logical protected path can also attest to
each other that the MMs are indeed intact and trusted.

The formation of this logical protected path requires only
per-neighbor key storage yet greatly facilitates secure FL.
Specifically, each MMi maintains a local data structure (e.g., a
counter) to reflect the reception of each packet as the “packet
footprint”. In this way, each packet should leave a certain
footprint at each hop’s monitoring moduleiff the packet is
successfully delivered along the logical protected path. Later
by comparing the packet footprints left at every two neighbors
MMA and MMB in the logical protected path, it either
confirms that the packets have been successfully delivered (if
the footprints match) or some problem occurs between MMA

and MMB (if the footprints do not match). The secrecy and
authenticity properties of the logical protected path ensure that
the footprints reported by each MMi will not be forged or
injected by a malicious network stack or malware.
Localizing a faulty link. Note thatTrueNet detects a faulty
link between two adjacent MMs, instead of a specific mali-
cious router. In this way, MMs do not rely on the untrusted
network stack or NIC to correctly deliver packets to the MMs:
if the NIC or network stack of a routerM drops or modifies
packets before sending to MMM , faults will be localized
between MMM and its neighboring MMs. For example in

Figure 1, if the malicious OS or a malware in routerA corrupts
or drops the packet before it reaches MMA, then the footprint
that packet leaves at MMA will differ from that at MMS , thus
causing linklSA to be detected as we show shortly.
Small TCB. The TCB in TrueNet only includes the trusted
computing primitives and the protected MM. Due to the
challenges outlined in Section III, it is impractical to include
the entire network stack and NIC in the TCB or for code
attestation. Due to those challenges, onecannot simply use
attestation to determine if the local OS or NIC is compromised
and stop any malicious system.

TrueNet FL phases.From a high level,TrueNet consists
of setup, 1-hop monitoring, and global accusation phases as
sketched below.

1) Setup:During protocol setup, an administration entity of
the network installs a public/private key pair, a public key
Kadmin of the administration entity, and a neighbor list to
each node. Every two neighborsA and B establish a shared
secret keyKAB , which is used to authenticate the messages
exchanged between MMA and MMB in the logical protected
path. The administration entity signs the neighbor list along
with a version number using its private keyK−1

admin. The
node private key, MAC key andKAB are sealed by and only
accessible to the local monitoring module.

2) 1-hop monitoring:To implement the secure channel be-
tween neighboring MMs in the logical path, a MMA computes
a Message Authentication Code (MAC) for each packet sent
to the next-hop MMB in the logical protected path using
KAB . By verifying the MAC, MMB can be convinced that its
neighborA is running the correct monitoring moduleother-
wiseKAB cannot be retrieved for authentic MAC generation.
Similarly, by authenticating the footprint reports, a nodecan be
convinced that its neighbors are telling the correct footprints
and having correctly monitored their neighbors in the logical
protected path,otherwise the sealed key cannot be retrieved
for authenticating the reports. This chain of 1-hop monitoring
ensures all links in a logical protected path have been correctly
monitored.

TrueNet provides two types of 1-hop monitoring primitives
in the monitoring modules, namely,per-packet monitoringand
aggregate monitoringfor achieving per-packet FL and aggre-
gate FL, respectively. These two monitoring approaches differ
in the footprint data structure and how frequently footprints
are compared between neighbors. In per-packet monitoring,
a monitoring module MMB maintains an identifier (e.g., a
sequence number) for each received packet with a correct
MAC computed by MMA, and sends back an acknowledgment
(ACK) to MMA for each received packet from MMA immedi-
ately. In aggregate monitoring in contrast, MMB increments a
counterif a packet received from the neighbor MMA contains
a correct MAC computed by MMA. Then MMB exchanges
the counters with its neighbor across the logical protected
pathsperiodically. Hence, aggregate monitoring reduces the
communication overhead and tellshow manypackets have
been dropped or corrupted between every two neighbors in the

logical protected paths, while per-packet monitoring provides
more fine-grained and immediate information aboutwhich
packetshave been corrupted between two neighbors in the
logical protected paths, enabling instantfailure recovery(e.g.,
by immediately retransmitting the corrupted packets at thenet-
work layeron a per-link basis). In both monitoring approaches,
MMs add additionalper-neighborsequence numbers for the
data packets, which are used to prevent replay and reordering
attacks and identify dropped packets.

3) Global accusation:A monitoring module MMA constantly
asks for the footprint reports from each neighbor MMB to
learn δAB . If MM A observes an abnormally largeδAB on
a link lAB in the logical protected path, MMA sends out
an accusation message to its 1-hop neighbors in the logical
protected path which can verify and accept the message based
on authentic MACs. Similarly, the neighbors of MMA in
the logical protected path further tell their neighbors about
the accusation. This process recursively achieves network-
wide trustworthy broadcasting(Section VIII). Hence,all the
network nodes remove faulty links from their routing tables
upon identification. Such consistency of routing tables further
accelerates network-wide failure recovery, enabling the use of
link-state routing which remains the de facto routing protocol
for contemporary intra-domain networks.
Small router state and support for dynamic paths.Note that
in any phase, attestation and authentication are only performed
between two neighbors; thus each node only maintainsper-
neighborstate. Such 1-hop operations also eliminate the need
for long-lived and stable paths, facilitating load balancing.

The following sections detail each phase ofTrueNet.

VI. TrueNet SETUP

In the setup phase, a local network administrator remains
responsible for setting up and updating a router with appro-
priate cryptographic keys and its neighbor list as follows.

Day Zero setup.The first time a routeri physically joins a
network, the network administrator (i) launches a monitoring
module MMi on routeri and ensures that MMi is securely
loaded and protected by the trusted computing primitives on
router i. (ii) The administrator installs a public keyKadmin

of the administration entity of the network into MMi and
ensures that MMi has correctly loaded and protectedKadmin

for verifying future messages from the administrator. (iii) The
administrator creates and installs a public/private key pair
Ki/K

−1
i and a neighbor list NLi for router i, along with a

version number and a signature created using its private key
K−1

admin. The private keyK−1
i is sealed and only accesible to

MM i. (iv) Each routeri exchanges a secret keyKij with each
of its neighborsj using their public/private key pairs [33].Kij

is sealed and only accessible to MMi and MMj , and is used
for constructing the secure channel between MMi and MMj .

Incremental updates.After Day Zero setup, the administra-
tion entity uses the public keyKadmin to authenticate all its
update messages to the routers (e.g., when updating NLi or
Ki). These control messages from the administration entity

will be protected by per-packet monitoring as we describe
below. The MMs run at routers are responsible for verifying
the authenticity of these updates messages usingKadmin.
The neighboring nodesi and j can periodically update their
shared secret keyKij . However, this paper omits the details
of handling these updates due to space limitation.

VII. TrueNet 1-HOP MONITORING

Given an end-to-end communication pathp, 1-hop monitor-
ing in TrueNet ensures that the data sent by the source will
be correctly delivered to the destination alongp, otherwise a
faulty link in p that tampers with correct data delivery will be
localized and accused. Thus, we assume the source node can
learn pathp (e.g., from link-state routing, source routing, or
recent centralized routing protocols like 4D [20], SANE [16]
or ETHANE [15]), which is a common requirement for all
existing secure FL schemes. We first detail each of per-
packet and aggregate monitoring, and then discuss their usage
scenarios in Section VII-C.

A. Per-packet Monitoring

We use Figure 1 as an example to illustrateTrueNet per-
packet monitoring. Table I shows the interactions between
the sourceS and the first hop routerA for transmitting and
protecting a single packet. Subsequent routers in pathp will
perform identical operations as routerA.
Packet generation.Upon receiving a packetm with path p

embedded from the network stack (OSS) of the sourceS, the
trusted monitoring module MMS wraps the packet intoMS

with a per-neighborsequence numberNS
SA for the next-hop

router A, and a MAC computed overm and NS
SA with the

secret keyKSA shared between MMS and MMA (Table I S2).
Meanwhile, routerA maintains a per-link sequence number
NA

SA remembering the last sequence number for the packets
sent fromS to A. Note that only one MAC for the next hop
is attached (as opposed to attaching one MAC for each router
in the path), because the transitivity of verification provided
by trusted computing enables the chaining of trusted 1-hop
verifications to achieve end-to-end guarantees.

As it transmits the packet, MMS starts a timer, expecting to
receive an ACK from the next-hop receiver MMA within the
allocated time, allowing MMS to determine whether MMA
successfully received the packet. For this purpose,NS

SA is
temporarily stored as the packet identifier until the timer
expires (Table I S3). MMS then incrementsNS

SA for the next
packet to be sent to prevent packet replay and reordering
attacks (Table I S4), and sendsMS back to OSS , which in
turn forwardsMS to routerA.
Packet reception. Each received packet is expected to be
passed through the monitoring module at each hop. At
router A, MMA first validates the received packetMS via
validatePkt (Table I A2), which includes checking the
sequence number, the next hop, and the MAC as follows:
1) validatePkt first checks if the per-neighbor sequence
numberNS

SA contained inMS matches the locally stored per-
neighborNA

SA value. If the values differ, indicating a replay,

Source Router A

S1) OSS → MMS : packetm
S2) MMS genPkt: MS ← m, NS

SA
, [m||S||NS

SA
]KSA

S3) MMS awaitACK: storeNS

SA
, start timer

S4) MMS incrSN: NS

SA
← NS

SA
+ 1

S5) MMS → OSS : MS

MS=⇒ A1) OSA → MMA MS

A2) MMA validatePkt: if MS invalid, accuselSA

A3) MMA genACK: ackAS ← A, NA

SA
, [A||NA

SA
]KSA

A4) MMA incrSN: NA

SA
← NS

SA

S6) OSS → MMS : ackAS

ackAS⇐= A5) MMA → OSA: ackAS

S7) MMS verifyACK: if ackAS invalid, accuselSA A6) MMA updatePkt: MA ← m, NA

AB
, [m||A||NA

AB
]KAB

A7) MMA awaitACK: storeNA

AB
, start timer

A8) MMA incrSN: NA

AB
← NA

AB
+ 1

A9) MMA → OSA: MA =⇒ further sent to routerB

TABLE I
TrueNet PER-PACKET MONITORING. SHADED INSTRUCTIONS ARE FUNCTIONS OF THE MONITORING MODULEMM i WHICH IS IN THE TCB. [m]K

DENOTES AMESSAGEAUTHENTICATION CODE (MAC) COMPUTED OVERm USING THE SYMMETRIC KEYK .

re-ordering, or packet injection,validatePkt terminates
(skipping the following checks) and returns “invalid”.

2) validatePkt then retrieves the next hop from pathp
embedded inMS , and checks if the local routerA is indeed
the next hop inp for the current communication flow. An
inconsistency indicates the previous router’s OS used a wrong
interface (packet misrouted), andvalidatePkt terminates
returning “invalid”.

3) validatePkt finally checks the MAC inMS , and
returns “invalid” if the MAC is incorrect.

If validatePkt outputs “valid”, MMA generates an ACK
including NA

SA as the packet identifier with a MAC (Table I
A3), which MMS awaits. MMA then increments the local
per-neighbor sequence numberNA

SA (Table I A4) to prevent
packet replay and reordering attacks. IfvalidatePkt re-
turns “invalid”, MMA believes that forwarding misbehavior
occurs between MMS and MMA (denoted bylSA). MMA

generates an accusation if the failure rate remains high with
efficient trustworthy broadcasting (Section VIII), or signals
MMS in the ACK for instant failure recovery as we show
shortly.

Packet forwarding. If the packet validation succeeds, the orig-
inal MAC embedded in the received packetMS is replaced
with a new one computed for the next hop MMB using the
sealed secret keyKAB shared between MMA and MMB ; and
the per-neighbor sequence number is also replaced with the
one (NA

AB) for traffic between MMA and MMB (Table I A6).
Right before the updated packetMA departs MMA, MMA

also starts a timer and expects an authenticated ACK from the
next-hop MMB (Table I A7). Finally, MMA increments the
per-neighbor sequence numberNA

AB for the next-hopB to
prevent packet replay and reordering attacks (Table I A8).

ACK reception and failure recovery. Upon receiving an
ACK ackAS from a neighbor routerA (Table I S6), MMS

checks if the corresponding packet identifier (NS
SA in this case)

is still stored indicating the timer has not expired. Then MMS

checks if the MAC is correct. If any check fails, MMS can
either re-transmit the particular corrupted packet up tor times

for instant failure recovery, or globally accuseslSA for failing
to deliver any of ther + 1 packets corresponding toNS

SA via
trustworthy broadcasting. The number of re-transmissionsr is
introduced and set to tolerate spontaneous packet loss. E.g.,
assuming an upper boundρ (probability) of packet loss rate
and an upper boundǫ of allowed false positive rate, we should
setr ≥ ln ǫ

ln ρ
− 1.

Optimization. Similar to the TCP acknowledgement mech-
anism, a sender MM can send data packetsasynchronously
to the ACKs within a certainsliding windowof w packets,
before the ACKs for previous packets have been received.
Accordingly, a receiver node can sendone singleACK for
all the w packets in the previous sliding window to reduce
communication overhead.

B. Aggregate Monitoring

In aggregate monitoring, packet forwarding at each hop
is divided into consecutivemonitoring intervals , which are
asynchronousamong network nodes. A monitoring interval
from A to B refers to the aggregate monitoring for packets
sent fromA to B in that interval.

Different from per-packet monitoring where MMS starts a
timer and expects animmediateACK from MMA for each
packet sent from MMS to MMA, in aggregate monitoring,
MMS increments a localmonitoring counterCS

SA for each
packet sent toA. Our key observation is that, due to packet
authentication by 1-hop MACs,packet count becomes a ver-
ifiable measure of the packet payload as well, because a
modified packet payload will result in an invalid MAC and
cause the packet to be dropped without polluting the counter.
Correspondingly, MMA also increments a local monitoring
counterCA

SA for eachvalid packet received from MMS ; and
increments another per-neighbor counterC

A

SA for eachinvalid
packet received fromA, as Figure 2 depicts. These counters
can later be compared to reflectδSA = {δd

SA, δ
f
SA}, i.e.:

δd
SA = |CS

SA − CA
SA|, δ

f
SA = C

A

SA (2)

Similarly, MMA sets a counterCA
AB for the next hopB,

and this process recursively builds a trusted chain of 1-hop

S A

monitoring interval from S to A

monitoring interval from A to S

CS

SA
CA

SA
, C

A

SA

CS

AS
, C

S

AS
CA

SA

Fig. 2. Router state inTrueNet aggregate monitoring: three counters for
each neighbor.

aggregate monitoring over the entire end-to-end path, while
each node only has per-neighbor state (monitoring counters).

Periodically, neighbors exchange local monitoring counters
in a “request-and-reply” manner to learnδAB for each linklAB

and accuse any link withδAB larger than a pre-set accusation
threshold. Specifically, each monitoring interval consists of
sendingη packets (e.g.,104 packets). MMS counts the number
of packets sent in each monitoring intervalI from S to A. Each
time η packets have been sent indicates the end of interval
I, and MMS generates a counter requestRSA including the
requesterS, the next-hop requesteeA, the interval numberI to
prevent replay attacks, and a MAC computed for the next hop
MMA. Then similar to per-packet monitoring, MMS storesI
and CS

SA, starts a timer to wait for the counter report from
MMA, increments the interval numberI, and zerosCS

SA for
the next interval. Finally, the requestRSA and the reportASA

proceed in the same way as in per-packet monitoring. Based
on the receivedASA, MMS can calculateδSA (Equation 2)
and accuse a faulty link if any.

C. Per-Packet vs. Aggregate Monitoring

Per-packet monitoring enables instant FL and failure recov-
ery by re-transmitting the corrupted packets immediately,at
the cost of an additional ACK per packet (or perw packets in
a sliding window) on each link. Aggregate monitoring reduces
the communication overhead by sending one counter report for
all the packets in each monitoring interval (withη packets),
at the cost of additional FL delay (one monitoring interval).

In TrueNet, per-packet monitoring is used to protect critical
control-plane messages, e.g., the router configuration messages
from the network administrator to each router as we mentioned
earlier, global accusation message via trustworthy broadcasting
as we show in Section VIII, or flow setup packets in TCP.
Accordingly, aggregate monitoring would be used to protect
line-rate data packets for the sake of lower overhead, and the
network can rely ontransport layerprotocols (such as TCP)
for retransmitting and recovering the lost or corrupted packets
on an end-to-end basis.

VIII. TrueNet TRUSTWORTHYBROADCASTING

TrueNet trustworthy broadcasting achievesreachability,
integrity, and trustworthinessof the broadcasted message.
Specifically, when a certain nodeO broadcasts a certain mes-
sagem, (i) every node in the network will receive the message
as long as the malicious nodes do not cause agraph partition
in the network topology (reachability), (ii) the broadcast
message received by each node is the same as the original one

O A

B

X

Z

Y

m, O, NO

OA
, [m||O||NO

OA
]KOA

m, O, NO

OB
, [m||O||NO

OB
]KOB

m, O, NA

AX
, [m||O||NA

AX
]KAX

m, O, NA

AY
, [m||O||NA

AY
]KAY

m, O, NA

AZ
, [m||O||NA

AZ
]KAZ

Fig. 3. TrueNet trustworthy broadcasting example. NodeO is the originator
of the broadcast message and other nodes use per-packet monitoring to protect
the broadcast message.

(integrity), (iii) and the broadcast message is trusted, e.g., the
accused link is indeed faulty (trustworthiness).

TrueNet trustworthy broadcasting is built on top of per-
packet monitoring to achieve the above security properties.
When a nodeO originates a broadcast messagem, it uses
per-packet monitoring (Table I) to convinceO’s neighbors
that the message has not been modified from the original
one thus preserving integrity, and the message is generatedby
the correct monitoring module thus preserving trustworthiness.
Figure 3 shows an example of how a broadcast message
propagates using per-hop monitoring (not showing the ACKs).
The per-packet authenticated ACK in per-packet monitoring
assures a sender that its neighbors have received the correct
message thus achieving reachability, also run the correct
monitoring modules, and thus will faithfully keep broadcasting
the message to their neighbors and so on.

Duplicate suppression.Numerous methods exist to ensure
that the broadcast message traverses each link only a single
time. Due to limited space we defer detailed protocol design
and analysis to future work. However, a simple method for
suppressing duplicate broadcast messages is for each MM to
keep state to detect duplicate messages it may later receive. To
recover the state, messages can contain time stamps and nodes
can be loosely time synchronized, thus only requiring storage
for the maximum clock skew plus the maximum duration for
the message to reach all nodes.

Global accusation. Once a node’s MM detects faults, the
MM generates an accusation and disseminates itinsidecertain
network-wide,periodic beacon messages, such as the peri-
odical routing updates (or link state announcements in link
state routing) or keep-alive messages between neighbors. In
TrueNet, each routerR’s MMR expects to receive every
neighbhor’s beacon after everyt seconds, otherwise MMR
accuses its neighbor which does not send a beacon on time
(hence a malicious router OS cannot prevent the locally gen-
erated accusations from being sent to its neighbors). A beacon
from a neighbor MMN contains any accusation generated
by MMN and is protected using per-packet monitoring. If
a beacon from MMN contains an accusation, this beacon
automatically becomes a broadcast message and is further

propagated using the trustworthy broadcasting.

IX. TrueNet FL ANALYSIS

This section analyzesTrueNet FL delay, security and
overhead, while Section XI presents real-field implementation
and evaluation.

A. FL Delay

The FL delay in per-packet monitoring equals the packet
re-transmission timer: only when all r + 1 packets fail to
be delivered (failure recovery fails) will a link accusation
be made. Theorem 1 states the lower bound ofr. During
aggregate monitoring, at the end of a monitoring interval,
a routerA can learn theaccurate δAB for each local link
lAB (thus achieving aggregate FL),regardlessof the interval
length η (number of packets sent in that interval). Hence,
the value ofη is set based on the desirable tradeoff between
detection delay and communication overhead. For example, a
smaller η enables faster detection but increases the number
of counter reports (one report required for everyη packets).
Furthermore, since faulty links are defined and detected based
on the accusation threshold, the value ofη is also determined
by the accuracy of the threshold-based faulty link accusation.
Specifically, a too smallη will introduce considerable noise in
the observed link loss rate, given byδd

AB

η
, due to the existence

of spontaneous packet loss. Theorem 1 states the lower bound
of η for achieving a sufficiently high accusation accuracy.

Theorem 1:Suppose the natural packet drop rate isρ on a
link, the accusation thresholdTd = ρ + ǫ whereTd ∈ (0, 1)1,
and the allowed false positive and negative rate isσ. Then the
FL delay or packet re-transmission time for failure recovery
in per-packet monitoring is at leastr = ln σ

ln ρ
−1. The FL delay

or a monitoring interval length is at leastη =
ln(2

σ
)

(Td−ρ)2 .
Proof: We assume each link has a natural drop rateρ.

Per-packet monitoring. The probability that a benign
link “naturally” drops all r + 1 packets (includingr re-
transmissions), or the false positivefp, is given byfp = ρr+1.
Since we requirefp ≤ σ, we haver ≥ ln σ

ln ρ
− 1.

Aggregate monitoring. We study how many packet transmis-
sions are required to estimate the drop rate of a single linklij
within a certainaccuracy interval. Suppose that the true value
of the drop rate oflij is θ∗ij , and the estimated drop rate oflij
is θij . We compute the number of packets needed to achieve
a (ǫ, σ)-accuracy forθij :

Pr(|θij − θ∗ij | > ǫ) < σ (3)

i.e., with probability1 − σ the estimatedθij is within (θ∗ij −
ǫ, θ∗ij + ǫ). We define each time a data packet is sent over link
lij as a random trial, and thus each monitoring interval hasη

random trials. Then usingHoeffding’s inequality, we have:

Pr(|θij − θ∗ij | > ǫ) < 2e−2ηǫ2 (4)

1To simplify the mathematical formula, we denoteTd as a fraction of
packets dropped, instead of the absolute number of dropped packets as the
original T d denotes.

Then by Equation 3, we have:

2e−2ηǫ2 ≤ σ ⇒ η ≥
ln(2

σ
)

2ǫ2
(5)

Sinceǫ = Td − ρ, we further have:η ≥
ln(2

σ
)

2(Td−ρ)2

Finally, the network-widefaulty link detection process is
accelerated inTrueNet since a faulty link detected by one
node will be removed from the routing tables of all other
nodes; whereas in existing protocols a node cannot share
others’ accusation because of slander attacks.

B. Security analysis

TrueNet achieves per-packet and aggregate FL via per-
packet and aggregate monitoring, respectively. Recall that
the adversary can drop, modify, inject, replay, re-order, and
misroute packets at links under control.
Per-packet FL. Packet dropping, modification, and injection
attacks between MMA and MMB will cause MMA or MMB

to fail to generate authentic ACKs for the original packets;
thus the linklAB that corrupts the packets will be localized.
Packet replay and re-ordering attacks from MMA to MMB will
cause packets to be dropped at MMB thanks to the use of per-
neighbor sequence numbers, because MMB stores and only
expects a packet with themost recentper-neighbor sequence
number. Finally, packet misrouting attacks are impossible
because the source embeds the expected pathp in the packets,
and routers will perform next-hop checking based on the path
and will drop any packets that are misrouted.
Aggregate FL. Without loss of generality, we consider a
monitoring interval fromA to B for example. Upon receiving
the countersCB

AB and C
B

AB from B (otherwise MMA can
immediately accuselAB for not sending a correct counter re-
port), MMA can first be convinced that the counter values were
reported by the correctly running MMB andare thus correct.
Then MMA can estimateδAB and detect any fault. Similar
to the analysis of per-packet FL above, packet dropping will
increaseδd

AB , and packet modification, injection, replay, re-
ordering, and misrouting will increaseδf

AB .
We give one interesting note about packet misrouting attack

using Figure 1 as an example topology. The malicious node
B can first misroute the packets to a colluding neighborC

′

(not shown in the figure), which thentransparentlyforwards
the packet back toC (the legitimate next hop ofB in path
p) without passing the packet through MMC′ . TrueNet treats
this as a legitimate case which doesnot violate aggregate FL,
becausein the logical protected paththe packets still traverse
from MMB to MMC in order. This packet detouring is only
possible betweencolluding neighborswhich can be treated as
one logicalmalicious entity, and is akin to detouring packets
inside the same malicious router.

C. Overhead Analysis

Storage overhead.We focus on the router state required
for per-packetprocessing which needs to reside in on-chip
memory or cache and usually becomes the system scalability
bottleneck. A router state inTrueNet includes (i) per-neighbor

secret keys (e.g., 16 bytes per neighbor) for both per-packet
and aggregate monitoring, and (ii)three monitoring counters
(e.g.,3× 8 bytes) in aggregate monitoring as Figure 2 shows.
Since per-packet monitoring is used for infrequent (compared
to the link rate) packets, such state can be either stored in the
adequate off-chip DRAM, or stored in a small cache (storing
up to w packets in a sliding window at any time).
Communication overhead. The extra communication over-
head inTrueNet per-packet monitoring includes one ACK per
packet or per sliding window withw packets. The communica-
tion overhead in aggregate monitoring is one counter reportper
monitoring interval (e.g., with104 packets). When per-packet
monitoring is only used for protecting infrequent (compared to
the line rate) control messages such as flow setup in TCP and
link-state routing updates, the extra communication overhead
amortized on each data packet is small.

X. TrueNet ROUTER ARCHITECTURE

We present aTrueNet router architecture leveraging a
dedicated hypervisorand TPM chip to implement the trusted
computing primitives (remote attestation, isolation, andsealed
storage), and modern mainstream router hardware to speed up
time-critical operations inTrueNet.

Anatomy of a TrueNet router. Modern routers commonly
use a switch-based router architecture with fully distributed
processors [11] and the network interfaces perform almost all
the critical data-path operations for a normal packet. Figure 4
shows the architecture of aTrueNet router, where the shaded
components are those added in aTrueNet router but not
present in a standard modern router and also constitute the
TCB for TrueNet. As Figure 4 shows, eachTrueNet router
is equipped with a TPM chip and CPUs with hardware vir-
tualization support (e.g., AMD SVM [5], or Intel TXT [25]),
and installs a dedicated hypervisor such as TrustVisor [32].
The dedicated hypervisor isolates MM from the rest of the
router system (e.g., router OS, peripheral devices, etc.),en-
ables remote attestation and sealed storage with the support
of TPM chip, and protects MM’s execution integrity, data
integrity and secrecy. Similar to TrustVisor [32], the TPM
operations are only needed when the dedicated hypervisor
boots to ensure the hypervisor’s integrity, while afterwards the
dedicated hypervisor performs attestation and storage sealing
to improve the efficiency.

For better performance, we anticipate on every network
interface, there is atrustedhardware MAC Module (MACM)
to perform the MAC operations in MM as described earlier. A
MACM has a piece of private memory space and a high-speed
MAC computation module. The private memory of MACM is
mapped to the main memory residing in the CPU subsystem,
and shared with the local MM. The dedicated hypervisor also
protects this piece of main memory from the rest of the CPU
subsystem, so that only the MM can read from and write
to this main memory region. However, MACM can also be
implemented inside the software MM as we described earlier,
which we used for our prototyping (Section XI-A).

CPU Subsystem

Switch Fabric

Network

Interface

Network

Interface
......

RAM

 MAC Module

 (MACM)

 Computation

 Module

Network

Interface

App

Router

OS

Hardware

Hypervisor

MM

TPM &

IOMMU

App

Trusted

Untrusted

Fig. 4. TrueNet router architecture.

Software monitoring module MM. A MM handles all
control-plane operations that are not time-critical, or infre-
quent in aTrueNet system. First, the local MM negotiates
secret keys with the MMs on the neighboring routers, and
writes the secret keys into the main memory region that
maps the private memory of MACM. Secret key negotiation
only happens periodically according to the cryptographic key
lifetime. Secondly, MMs on the source nodes also handle
packets originating from the connected end-hosts by adding
the entire routing path into the packets (Section VII) for 1-hop
monitoring. Thirdly, the MM is also responsible for generating
accusations to be broadcasted in the beacon messages. In
addition, MM also periodically checks the locally stored timers
for awaiting ACKs from neighbors to detect and remove any
expired entries.

Dedicated MAC module. The dedicated MAC module
(MACM) is responsible for all data-plane operations to achieve
high packet processing throughput. A MACM verifies the
MAC in the packet, validates the correct presence of the local
router in the embedded path, computes the new MAC using the
shared secret key for the next hop router, updates per-neighbor
sequence numbers and monitoring counters, and attaches the
new MAC to the packet on a per-packet basis. To achieve high
throughput in MAC computation, We can use parallelizable
MAC algorithms such as XOR-MAC [13], XECB-MAC [18],
PMAC [14], or high speed hardware implementations [31],
[38], [41], [44] which can obtain more than 62.6 Gbps
throughput.

XI. I MPLEMENTATION AND EVALUATION

In this section, we evaluate bothTrueNet’s computational
overhead based on our Linux prototype of aTrueNet router
and TrueNet’s storage overhead based on real-world ISP
topologies and traffic traces.

A. Prototype and Computational Overhead

We implement aTrueNet router prototype in Linux with
TPM chip to evaluate per-packet cryptographic computational
overhead of aTrueNet router. We show the performance
of a TrueNet intermediate router which performs two MAC
operations per packet (verification of the previous-hop MAC
and generation of the next-hop MAC)inside the software

 200

 300

 400

 500

 600

 700

 800

 900

 300 512 768 1024 1280 1500

th
ro

ug
hp

ut
 (

M
bp

s)

packet size (bytes)

TrueNet
Baseline

Fig. 5. TrueNet router throughput.

 1

 10

 100

 1000

 10000

 100000

ATT Sprint L3 Verio VSNL
(India)

Tele
stra

I2

K
ey

 S
to

ra
ge

 O
ve

rh
ea

d
(#

 k
ey

s) Other Schemes
TrueNet Worst

TrueNet Average

Fig. 6. Key storage overhead of a single router
on ISP topologies.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

ATL CHI HOU KAN LA NYC SLC SEA WAS Avg

S
to

ra
ge

 O
ve

rh
ea

d
(b

yt
es

)

Stat. FL Monitoring State
Stat. FL Key Storage Overhead

TrueNet Overhead

Fig. 7. Overhead comparison based on Inter-
net2 topology and traffic traces.

MM. We observe that theTrueNet per-packet cryptographic
operations, even implemented inTrueNet software module
MM without any hardware acceleration, can fully cope with
gigabit link-rate processing of data packets, and are fully
scalable to higher performance with more CPUs. We anticipate
the dedicated hardware MACM (Section X) can further boost
the TrueNet router throughput.

Platform. We performed all experiments on off-the-shelf
servers with one Intel Xeon E5640 CPU (four 2.66 GHz
cores, 256KB L1 cache, 1MB L2 cache, 12MB L3 cache),
12G DDR3 RAM with 25.6 GB/s memory bandwidth. This
CPU supports new Intel AES-NI instructions [26] for high
speed AES computation. The servers are equipped with TPM
chips and Broadcom NetXtreme II BCM5709 Gigabit Ethernet
Interface Cards, and runs Ubuntu 10.04 32-bit Desktop OS.

Prototype. In our TrueNet prototype, we modify TrustVi-
sor [32] as our dedicated hypervisor. We run Ubuntu Linux
OS on top of our hypervisor and implement aTrueNet
intermediate router as a multi-threaded user-space process. A
TrueNet router process includes the secure software module
MM and untrusted network stack. The untrusted network stack
consists of two threads: a receiver thread that listens to network
packets via TUN/TAP virtual interfaces and puts received
packets to an input packet queue, and a forwarder thread
in charge of sending the packets in the output packet queue
to their appropriate next-hop routers. Multiple MMs run as
child threads, constantly poll the input packet queue, copy
the new incoming packets to a shared output packet queue,
and perform MAC computations. We use the CMAC-AES-
128 MAC algorithm to leverage the new AES-NI instructions
on Intel CPUs.

Our software module MM performs similar per-packet cryp-
tographic operations as the hardware module MACM proposed
in Section X in software manner, while maintaining same
security guarantees. The MM child threads are running inside
the secure and isolated execution environment provided by
dedicated hypervisor ever since threads start. The dedicated
hypervisor also protects the memory region of input packet
queue as accessible by both the untrusted network stack and
MMs, and the output packet queue as writable by MMs
but only readable by untrusted network stack. This memory
configuration assures MM’s execution integrity. Finally, the

Packet Size (Byte)
1500 1000 500 100

MAC Computation 4.2 2.9 1.6 0.4
Others 1.3 1.1 0.7 1.1
Total 5.5 4 2.3 1.5

TABLE II
TrueNet SOFTWARE MODULEMM’ S LATENCY OVERHEAD

BREAKDOWN. ALL THE DATA IS THE AVERAGE TIME (MICROSECONDS) IN

50000PACKET PROCESSING TRIALS.

TPM securely boots and late-launches the dedicated hypervi-
sor to guarantee its integrity, as described in the TrustVisor
proposal [32].

Throughput and Latency Breakdown. We tested the
throughput of our softwareTrueNet router prototype using
the widely adopted network performance benchmarking tool
Netperf [3]. Figure 5 shows the test result. The baseline
performance in the figure is obtained by using a main thread
to receive packets,two MM threads to move packets to the
output packet queuewithout any other operations, and one
forwarder thread to send packets out to next-hop routers.
For TrueNet prototype, the test setting is similar to baseline
performance test with the only difference that MM threads
perform TrueNet packet validation and MAC computations
for every packet. As Figure 5 shows,TrueNet prototype
incursnegligiblethroughput degradation when compared with
the baseline throughput (maximum degradation in our test is
(817-789)/817=4.5% when packet size is 1024 bytes, most
degradation rates are under 2%).

We also shows a latency overhead breakdown of executing
software module MM’s per-packet process. From Table II,
we know that, leveraging the new AES-NI instruction, MAC
computations are highly efficient (on average 3 CPU cycles
per packet byte). In our prototype, AES key setup time is
negligible since eachTrueNet router only needs to hold one
session key per neighboring router in a session key life time,
and we can pre-compute all AES sub-keys.

B. Storage Overhead Measurement

TrueNet’s ability to deliver strong security properties (in-
stant failure recovery with per-packet FL, global accusation,
etc) with less state than previous attempts [12], [47] follows

A

B C

logical protected link

Fig. 8. Incremental deployment ofTrueNet. The shaded nodes have
deployedTrueNet and form logical trust links between each other.

logically. Still, measurements under real-world conditions pro-
vide an exact assessment ofTrueNet’s strength.
Rocketfuel-based measurements.The Rocketfuel topolo-
gies [40] of various top-tier ISPs extend from the ISPs’ peering
routers to approximately the first hop within a customer’s
network. We count the node degree for each router in the
topology to assessTrueNet’s overhead and compare it to the
number of nodes in the network, representing the recently
proposed Statistical FL [12] and PAAI [47]’s key storage
overhead. Figure 6 suggests thatTrueNet incurs on average
two orders of magnitude less overhead in the worst case
(considering the maximum node degree in the topologies), and
three order less overhead for the average case (consideringthe
average node degree).
Internet2-based measurements.The Internet2 provides sim-
ilar topology data for its core routers, which Figure 6 also
illustrates (labeled as “I2”). Since this topology only includes
core routers,TrueNet does not deliver the orders of magni-
tude less overhead achieved with the Rocketfuel topologies,
providing an 83% savings in the average case and 69% in the
worst case. Conveniently, the Internet2 also provides Netflow
data, allowing for measurement ofTrueNet’s and Statistical
FL’s monitoring state overhead. These Netflow files capture
1/100 packets seen over a five minute interval. In Statistical
FL, the router incurs an around 500-byte “secure sketch” [19]
for each path (identified as each unique source and destination
in our measurement). In contrast, aTrueNet router maintains
three counters (24 bytes) for each neighbor. Figure 7 shows
thatTrueNet requires approximately five orders of magnitude
less monitoring state overhead. Additionally, these flow data
allow for a more accurate estimation of key storage overhead
in Statistical FL (number of sources with traffic concurrently
traversing the same router), also shown in Figure 7 (the key
storage overhead inTrueNet is still one key per neighbor).

XII. D ISCUSSION

A. Incremental Deployment

Although we argue it is feasible to upgrade all routers with
trusted computing primitives withina single administrative
domain, we note that partial deployment ofTrueNet can still
benefit the early adopters. Specifically, when only a subset of
routers in a network are equipped withTrueNet, the moni-
toring modules still constitute logical protected paths where
a logical protected linkbetween two MMs may consist of
multiple physical links. Figure 8 shows an example where the

shaded nodes have deployedTrueNet and a logical protected
link consists oflAB and lBC . Hence, FL is still achieved on
each logical protected link (though not an exact physical link),
which helps localizing the failure to a bounded region and fa-
cilitates network diagnosis. Furthermore, the more densely the
MMs are deployed, the more accurate the failure localization
can be, which incents incrementally deployingTrueNet.

B. Interdomain Deployment

TrueNet mainly targets intra-domain networks such as ISP
and enterprise networks, where sophisticated hardware attacks
can be precluded since theremote attacker (the adversary
model we considered) does not have physical access to the
routers. However, it is ineffective to deployTrueNet in the
current inter-domain setting where each Autonomous System
(AS) represents a node inTrueNet, because a selfish or
malicious AS has physical access to its routers and can thus
subvert the hardware (e.g., TPM chips) upon which trusted
computing primitives rely. Fortunately, the recently proposed
SCION [46] inter-domain architecture groups the ASes into
different trust domains, within which strong contractual or
legislative regulation can be enforced. Hence, an AS tam-
pering with the hardware can be legally penalized by the
containing trust domain. This architecture naturally enables the
wide deployment ofTrueNet (or trusted computing primitives
in general) across different ASes within a trust domain.
Meanwhile, TrueNet also serves as an example of how to
technically achieve enforceable accountability within a trust
domain in SCION.

XIII. R ELATED WORK

Many efforts in trusted computing focus on efficient im-
plementation of remote attestation, sealed storage, and secure
boot for bootstrapping trust on commodity computers [32],
[36]. A few proposals also consider utilizing trusted computing
to address network security plagues [22], [37], [39]. However,
BIND [39] focuses on routing security and cannot secure
against raw user input and configurations. Not-a-Bot [22]
leverages trusted computing and TPM to mitigate DDoS
attacks but not to secure the network layer. Recently, Saroiu
et al. [37] propose the design of TPM-based “trusted sensors”
via remote attestation to secure a broad range of mobile
applications.

The network fault localization problem has been extensively
studied in the literature with traditional network infrastructure,
which turns out to be a surprisingly challenging task indicated
by the security vulnerabilities of many existing protocols[7],
[9], [10], [24], [30], [34], [35] (both Barak et al. [12] and
Zhang et al. [47] have summarized the vulnerabilities). Among
the known secure proposals, the protocol due to Avramopou-
los et al. [8] incurs high computational and communication
overhead, because it requires acknowledgments and multiple
digital signature operations from all routers in the path for
each data packet. Both Statistical FL [12] and PAAI-1 [47]
require per-node secret key storage and per-path monitoring
state, and incur unacceptably long detection delays (e.g.,after

sending at least106 packets) due to their use of probabilistic
data structures for packet fingerprinting to reduce storage
overhead.

XIV. C ONCLUSION

Using secure FL as a case study, we demonstrate that trusted
computing enables transitivity of verification and eliminates
the need of establishingdirect point-to-pointtrust between any
two nodes in the network which incurs high storage overhead
and obstructs key management.TrueNet employs only a small
TCB to achieve secure FL with small router state, dynamic
path support, and global accusation that are proven impossible
in traditional networks. We hopeTrueNet can spark future
research on utilizing trusted computing to efficiently address
other network security problems such as DDoS defense, access
control, resource allocation, etc.

REFERENCES

[1] Arbor networks: worldwide security survey 2010. http://www.
arbornetworks.com/spsecurity report.php.

[2] Cisco security hole a whopper. http://www.wired.com/politics/security/
news/2005/07/68328.

[3] Netperf benchmark. http://www.netperf.org/netperf/.
[4] Symantec warns of router compromise. http://www.routersusa.com/

symantec-warns-of-router-compromise-2.html.
[5] Advanced Micro Devices. AMD 64 architecture programmer’smanual:

Volume 2: System programming. AMD Publication no. 24593 rev. 3.14,
Sept. 2007.

[6] X. Ao. Report on dimacs workshop on large-scale internet attacks.
http://dimacs.rutgers.edu/Workshops/Attacks/internet-attack-9-03.pdf.

[7] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker. Loss and
delay accountability for the internet. InIEEE International Conference
on Network Protocols (ICNP), 2007.

[8] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly
secure and efficient routing. InIEEE Infocom, 2004.

[9] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H.Rubens.
ODSBR: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks.ACM Trans Inform. Syst. Secur, 2008.

[10] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. Anon-demand
secure routing protocol resilient to byzantine failures. In ACM WiSe,
2002.

[11] J. Aweya. IP router architecture: An overview.International Journal of
Communication Systems, 14(5):447–475, June 2001.

[12] B. Barak, S. Goldberg, and D. Xiao. Protocols and lower bounds for
failure localization in the internet. InProceedings of EUROCRYPT,
2008.

[13] M. Bellare, R. Guerin, and P. Rogaway. XOR MACs: New methods
for message authentication using finite pseudorandom functions. In
CRYPTO ’95, pages 15–28. Springer-Verlag, 1995.

[14] J. Black and P. Rogaway. A block-cipher mode of operationfor
parallelizable message authentication(PMAC). InEUROCRYPT ’02,
volume LNCS 2322, pages 384–397. Springer-Verlag, 2002.

[15] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and
S. Shenker. Ethane: Taking control of the enterprise. InSIGCOMM,
2007.

[16] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh,
N. Mckeown, and S. Shenker. Sane: A protection architecturefor
enterprise networks. InUSENIX Security, 2006.

[17] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification
of software components in C. InIEEE Transactions on Software
Engineering, 2004.

[18] V. D. Gligor and P. Donescu. Fast encryption and authentication:
XCBC encryption and XECB authentication modes. InFast Software
Encryption ’01, volume LNCS 2355, pages 92–108. Springer-Verlag,
2001.

[19] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.Path-
quality monitoring in the presence of adversaries. InProceedings of
SIGMETRICS, 2008.

[20] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach
to network control and management. InACM SIGCOMM CCR, 2005.

[21] T. C. Group. TPM specification version 1.2, 2009.
[22] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-

a-bot: Improving service availability in the face of botnet attacks. In
Usenix NSDI, 2009.

[23] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas. Trends indenial of
service attack technology. Technical report, CERT Coordination Center.

[24] J. R. Hughes, T. Aura, and M. Bishop. Using conservationof flow as
a security mechanism in network protocols. InIEEE Symposium on
Security and Privacy, 2000.

[25] Intel Corportation. Intel trusted execution techonology – software
development guide. Document number 315168-005, June 2008.

[26] Intel Mobility Group, Israel Development Center, Israel. Intel
advanced encryption standard (aes) instructions set, Jan.2010.
http://software.intel.com/en-us/articles/intel-advanced-encryption-
standard-aes-instructions-set/.

[27] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router.ACM Transactions on Computer Systems, 2000.

[28] C. Labovitz, A. Ahuja, and M. Bailey. Shining light on dark address
space. Technical report, Arbor Networks.

[29] F. Le, G. G. Xie, and H. Zhang. Theory and new primitives for safely
connecting routing protocol instances. InACM SIGCOMM, 2010.

[30] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan. An
acknowledgement-based approach for the detection of routing misbe-
havior in MANETs. IEEE Transactions on Mobile Computing, May
2007.

[31] Y. Lu, G. Shou, Y. Hu, and Z. Guo. The research and efficient fpga
implementation of ghash core for gmac. InInternational Conference on
E-Business and Information System Security, pages 1–5, 2009.

[32] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig.
TrustVisor: Efficient TCB reduction and attestation. InProceedings of
the IEEE Symposium on Security and Privacy, May 2010.

[33] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.
Minimal TCB code execution (extended abstract). InProceedings of
the IEEE Symposium on Security and Privacy, May 2007.

[34] A. T. Mizrak, Y. chung Cheng, K. Marzullo, and S. Savage.Fatih:
Detecting and isolating malicious routers. InIEEE Transactions on
Dependable and Secure Computing, 2005.

[35] V. N. Padmanabhan and D. R. Simon. Secure traceroute to detect faulty
or malicious routing. SIGCOMM Computer Communication Review
(CCR), 33(1):77–82, 2003.

[36] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in
commodity computers. InProceedings of the IEEE Symposium on
Security and Privacy, May 2010.

[37] S. Saroiu and A. Wolman. I am a sensor, and i approve this message.
In HotMobile, 2010.

[38] A. Satoh, T. Sugawara, and T. Aoki. High-performance hardware
architecture for galois counter mode.IEEE Transactions on Computers,
58(7):917–930, 2009.

[39] E. Shi, A. Perrig, and L. V. Doorn. BIND: A time-of-use attestation ser-
vice for secure distributed systems. InProceedings of IEEE Symposium
on Security and Privacy, May 2005.

[40] N. Spring, R. Mahajan, and D. Wetherall. Measuring isp topologies with
rocketfuel. InACM SIGCOMM, 2002.

[41] H. Technology. Aes based authentication cores. http://www.heliontech.
com/aesauth.htm.

[42] R. Thomas. Isp security bof, nanog 28. http://www.nanog.org/mtg-0306/
pdf/thomas.pdf.

[43] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow filter
to mitigate ddos flooding attacks. InIEEE Symposium on Security and
Privacy, 2004.

[44] B. Yang, R. Karri, and D. A. McGrew. A high-speed hardware
architecture for universal message authentication code.IEEE Journal
on Selected Areas in Communications, 24(10):1831–1839, 2006.

[45] X. Yang, D. Wetherall, and T. Anderson. Tva: A dos-limiting network
architecture. InIEEE/ACM Transactions on Networking, to appear.

[46] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, andD. G.
Andersen. SCION: Scalability, control, and isolation on next-generation
networks. In Proceedings of the IEEE Symposium on Security and
Privacy (Oakland), May 2011.

[47] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary identifica-
tion for data plane security. InProceedings of ACM CoNext, 2008.

