Showing changes from revision #27 to #28:
Added | Removed | Changed
noncommutative topology, noncommutative geometry
noncommutative stable homotopy theory
genus, orientation in generalized cohomology
A continuous linear operator between Banach spaces is Fredholm if it has finite dimensional kernel and finite dimensional cokernel.
The difference between the dimensions of the kernel and the cokernel of a Fredholm operator is called its index (the Fredholm index)
A standard equivalent characterization of Fredholm operators is the following:
A parametrix of a bounded linear operator is a reverse operator which is an “inverse up to compact operators”, i.e. such that and are both compact operators.
A bounded linear operator between Banach spaces is Fredholm, def. 1 precisely it is has a parametrix, def. 3.
Elliptic operators on compact manifolds are naturally Fredholm, when understood between the appropriate Sobolev spaces.
charged vacua of free Dirac field in Coulomb background are characterized by Fredholm operators
The image (range) of a Fredholm operator is closed.
The subspace of Fredholm operators in the space of bounded linear operators with the norm topology is open.
In other words, given a Fredholm operator , there exists such that every bounded linear operator satisfying is Fredholm. Fredholm operators on a fixed separable Hilbert space form a semigroup with respect to the composition and the index is a morphism of semigroups: .
The space of all Fredholm operators on an (infinite dimensional) separable Hilbert space is a model for the classifying space of degree-0 topological K-theory.
(…)
Fredholm operators generalize to Fredholm complexes. A finite chain complex
of Banach spaces and bounded operators is said to be a Fredholm complex if the images are closed and the chain homology of the complex is finite dimensional. The Euler characteristic (the alternative sum of the dimensions of the homology groups) is then called the index of the Fredholm complex. Each Fredholm operator can be considered as a Fredholm complex concentrated at zero. Each Fredholm complex produces a Fredholm operator from the sum of the even- to the sum of the odd-numbered spaces in the complex.
One can consider Fredholm almost complexes, where is not zero but the image of that operator is compact. Out of every Fredholm almost complex one can make a complex by correcting the differentials by compact perturbation terms. Elliptic complexes give examples of Fredholm complexes.
Textbook accounts:
Discussion of the space of Fredholm operators as the classifying space for topological K-theory:
See also:
Wikipedia, Fredholm operator
A. S. Mishchenko, Векторные расслоения и их применения (Vector bundles and their applications), Nauka, Moscow, 1984. 208 pp. MR87f:55010
S. Rempel, B-W. Schulze, Index theory of elliptic boundary problems, Akademie–Verlag, Berlin, 1982.
Lars Hörmander, The analysis of linear partial differential operators. III. Pseudo-differential operators, 1994, reprinted 2007.
Pietro Aiena, Fredholm and local spectral theory, with applications to multipliers, book page
Otgonbayar Uuye, A simple proof of the Fredholm Alternative, arxiv/1011.2933
Alexander Grothendieck, La théorie de Fredholm, Bulletin de la Société Mathématique de France 84 (1956), p. 319-384, numdam
Marina Prokhorova, Spectral Sections, arXiv:2008.04672.
Marina Prokhorova, Spaces of unbounded Fredholm operators. I. Homotopy equivalences, arXiv:2110.14359.
Marina Prokhorova, The continuity properties of discrete-spectrum families of Fredholm operators, arXiv:2201.09869.
Marina Prokhorova, From graph to Riesz continuity, arXiv:2202.03337.
For Fredholm complexes, see
Last revised on March 12, 2023 at 04:32:03. See the history of this page for a list of all contributions to it.