Nothing Special   »   [go: up one dir, main page]

nLab Born rule (changes)

Showing changes from revision #3 to #4: Added | Removed | Changed

Context

Quantum systems

quantum logic

\linebreak

quantum physics

\linebreak

quantum probability theoryobservables and states

\linebreak

quantum information

\linebreak

quantum computation

qbit

quantum algorithms:

\linebreak

quantum sensing

\linebreak

quantum communication

Probability theory

Contents

Idea

The Born rule is the core statement of coordination in the foundations of quantum physics:

In its version for pure states the Born rule says that

then the probability of observing the given eigenstate in a quantum system which is in state ψ\psi equals (in bra-ket notation):

ψ|P|ψψ|ψ. \frac{ \langle \psi \vert P \vert \psi \rangle }{ \langle \psi \vert \psi \rangle } \,.

In particular, if WW is an orthonormal basis for the Hilbert space of states associated with a quantum measurement-procedure, then the probability of measuring the result ww on a system in state |ψ\left\vert \psi \right\rangle is

ψ|ww|ψψ|ψ=|w|ψ| 2ψ|ψ \frac{ \langle \psi \vert w \rangle \langle w \vert \psi \rangle }{ \langle \psi \vert \psi \rangle } \;\;=\;\; \frac{ \big\vert \langle w \vert \psi \rangle \big\vert^2 }{ \langle \psi \vert \psi \rangle }

and so if the state is normalized to begin with (ψ|ψ\langle \psi \vert \psi \rangle = 1 ), then the probability is

P ψ(w)=|w|ψ| 2. P_\psi(w) \;=\; \big\vert \langle w \vert \psi \rangle \big\vert^2 \,.

Essentially in this form the rule was first formulated by Born 1926b p 805.

quantum probability theoryobservables and states

References

Historical origins

The Born rule is named in honor of

  • Max Born, Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 37 (1926) 863–867 [[doi:10.1007/BF01397477](https://doi.org/10.1007/BF01397477)]

where it appears (though disregarding the norm symbol) as a brief footnote-added-in-proof:

\begin{imagefromfile} “file_name”: “Born_stating_the_BornRule-Footnote.jpg”, “width”: 500, 560, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

and its expanded version

  • Max Born, Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 38 (1926) 803–827 [[doi:10.1007/BF01397184](https://doi.org/10.1007/BF01397184)]

which provides the mathematical details (p. 805):

\begin{imagefromfile} “file_name”: “Born_stating_the_BornRule-Expanded.jpg”, “width”: 460, 480, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

and finally in the followup

  • Max Born, Das Adiabatenprinzip in der Quantenmechanik, Zeitschrift für Physik 40 (1927) 167–192 [[doi:10.1007/BF01400360](https://doi.org/10.1007/BF01400360)]

which makes the interpretation more explicit (p. 171):

\begin{imagefromfile} “file_name”: “Born_stating_the_BornRule-ExpandedII.jpg”, “width”: 500, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

Early The adoption generalization of the this Born idea rule: to probabilitydensities for continuous observables is due to Wolfgang Pauli, as first recounted in:

  • Pascual Jordan, Über eine neue Begründung der Quantenmechanik, Zeitschrift für Physik 40 (1927) 809–838 [[doi:10.1007/BF01390903](https://doi.org/10.1007/BF01390903)]

\begin{imagefromfile} “file_name”: “Jordan-PauliBornRule.jpg”, “width”: 510, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

and then by Pauli himself, again in a footnote:

  • Wolfgang Pauli, Über Gasentartung und Paramagnetismus, Zeitschrift für Physik: A Hadrons and nuclei 41 (1927) 81–102 [[doi:10.1007/BF01391920](https://doi.org/10.1007/BF01391920)]

\begin{imagefromfile} “file_name”: “PauliStatingBornPauliRule.jpg”, “width”: 540, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

Early review of the Born-Pauli rule:

where it is once again a footnote:

\begin{imagefromfile} “file_name”: “HilbertNeumannNordheim-BornRule.jpg”, “width”: 500, 530, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

and then in its full recognition and amplification as a pillar of quantum physics:

  • Paul A. M. Dirac, The physical interpretation of the quantum dynamics, Proceedings of the Royal Society of London 113 765 (1927) [[doi:10.1098/rspa.1927.0012](https://doi.org/10.1098/rspa.1927.0012)]

\begin{imagefromfile} “file_name”: “Dirac_OnBornPauliRule.jpg”, “width”: 530, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

The full recognition and amplification of the Born rule as a pillar of quantum physics making it a probabilistic theory (cf. quantum probability) is (maybe besides Jordan 1927) due to:

  • John von Neumann, Die quantenmechanische Statistik, Part III in:

    Mathematische Grundlagen der Quantenmechanik, Springer (1932, 1971) [[doi:10.1007/978-3-642-96048-2](https://link.springer.com/book/10.1007/978-3-642-96048-2)]

    Mathematical Foundations of Quantum Mechanics Princeton University Press (1955) [[doi:10.1515/9781400889921](https://doi.org/10.1515/9781400889921), Wikipedia entry]

\begin{imagefromfile} “file_name”: “vonNeumann-BornRule.jpg”, “width”: 500, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

\begin{imagefromfile} “file_name”: “vonNeumann-QMStatistics.jpg”, “width”: 500, “unit”: “px”, “margin”: { “top”: -20, “bottom”: 20, “right”: 0, “left”: 10 } \end{imagefromfile}

Historical survey:

  • Jagdish Mehra, Helmut Rechenberg, The Probability Interpretation and the Statistical Transformation Theory, the Physical Interpretation, and the Empirical and Mathematical Foundations of Quantum Mechanics 1926-1932, Part 1 in: The Historical Development of Quantum Theory. Volume 6: The Completion of Quantum Mechanics, 1926-1941, Springer (2001) [[ISBN:978-0-387-98971-6](https://link.springer.com/book/9780387989716)]

Further discussion

Review:

  • Klaas Landsman, The Born rule and its interpretation, in: Compendium of Quantum Physics, Springer (2009) 64-70 [[doi:10.1007/978-3-540-70626-7_20](https://doi.org/10.1007/978-3-540-70626-7_20), pdf, pdf]

See also:

Last revised on September 3, 2023 at 20:05:44. See the history of this page for a list of all contributions to it.