Nothing Special   »   [go: up one dir, main page]

nLab bimodule (Rev #20, changes)

Showing changes from revision #19 to #20: Added | Removed | Changed

Contents

Idea

A bimodule is a module in two compatible ways over two algebras.

Definition

Let VV be a closed monoidal category. Recall that for CC a category enriched over VV, a VV-module is a VV-functor ρ:CV\rho : C \to V. We think of the objects ρ(a)\rho(a) for aObj(C)a \in Obj(C) as the objects on which CC acts, and of ρ(C(a,b))\rho(C(a,b)) as the action of CC on these objects.

In this language a CC-DD bimodule for VV-categories CC and DD is a VV-functor

C opDV. C^{op} \otimes D \to V \,.

Such a functor is also called a profunctor or distributor.

Some points are in order. Strictly speaking, the construction of C opC^{op} from a VV-category CC requires that VV be symmetric (or at least braided) monoidal. It’s possible to define CC-DD bimodules without recourse to C opC^{op}, but then either that should be spelled out, or one should include a symmetry. (If the former is chosen, then closedness one on side might not be the best choice of assumption, in view of the next remark; a more natural choice might be biclosed monoidal.)

Second: bimodules are not that much good unless you can compose them; for that one should add some cocompleteness assumptions to VV (with \otimes cocontinuous in both arguments; biclosedness would ensure that), and consider smallness assumptions on the objects CC, DD, etc. —Todd.

Examples

  • Let V=SetV = Set and let C=DC = D. Then the hom functor C(,):C op×CSetC(-, -):C^{op} \times C \to Set is a bimodule. Bimodules can be thought of as a kind of generalized hom, giving a set of morphisms (or object of VV) between an object of CC and an object of DD.

  • Let C^=Set C op\hat{C} = Set^{C^{op}}; the objects of C^\hat{C} are “generating functions” that assign to each object of CC a set. Every bimodule f:D op×CSetf:D^op \times C \to Set can be curried to give a Kleisli arrow f˜:CD^\tilde{f}:C \to \hat{D}. Composition of these arrows corresponds to convolution of the generating functions.

    Todd: I am not sure what is trying to be said with regard to “convolution”. I know about Day convolution, but this is not the same thing.

    Also, with regard to “Kleisli arrow”: I understand the intent, but one should proceed with caution since there is no global monad CC^C \mapsto \hat{C} to which Kleisli would refer. Again there are size issues that need attending to.

  • Let V=VectV = Vect and let C=BA 1C = \mathbf{B}A_1 and D=BA 2D = \mathbf{B}A_2 be two one-object VectVect-enriched categories, whose endomorphism vector spaces are hence algebras. Then a CC-DD bimodule is a vector space VV with an action of A 1A_1 on the left and and action of A 2A_2 on the right.

Properties

The 1-category of bimodules and intertwiners

Definition

For RR a commutative ring, write BMod RBMod_R for the category whose

  • objects are triples (A,B,N)(A,B,N) where AA and BB are RR-algebras and where NN is an AA-BB-bimodule;

  • morphisms are triples (f,g,ϕ)(f,g, \phi) consisting of two algebra homomorphisms f:AAf \colon A \to A' and B:BBB \colon B \to B' and an intertwiner of AA-BB'-bimdules ϕ:NgfN\phi \colon N \cdot g \to f \cdot N'. This we may depict as a

    A N B f ϕ g A N B. \array{ A &\stackrel{N}{\to}& B \\ {}^{\mathllap{f}}\downarrow &\Downarrow_{\phi}& \downarrow^{\mathrlap{g}} \\ A' &\stackrel{N'}{\to}& B' } \,.
Remark

As this notation suggests, BMod RBMod_R is naturally the vertical category of a pseudo double category whose horizontal composition is given by tensor product of bimodules. spring

The 2-category of algebras and bimodules

Let RR be a commutative ring and consider bimodules over RR-algebras.

Proposition

There is a 2-category whose

The composition of 1-morphisms is given by the tensor product of modules over the middle algebra.

Proposition

There is a 2-functor from the above 2-category of algebras and bimodules to Cat which

Proposition

This construction has as its image precisely the colimit-preserving functors between categories of modules.

This is the Eilenberg-Watts theorem.

Remark

In the context of higher category theory/higher algebra one may interpret this as says that the 2-category of those 2-modules over the given ring which are equivalent to a category of modules is that of RR-algebras, bimodules and intertwiners. See also at 2-ring.

The (,2)(\infty,2)-category of \infty-algebras and \infty-bimodules

Remark

The 2-category of algebras and bimodules is an archtypical example for a 2-category with proarrow equipment, hence for a pseudo double category with niche-fillers. Or in the language of internal (infinity,1)-category-theory: it naturally induces the structure of a simplicial object in the (2,1)-category CatCat

(X 1 0 1X 0)Cat Δ op \left( \cdots \stackrel{\to}{\stackrel{\to}{\to}} X_1 \stackrel{\overset{\partial_1}{\to}}{\underset{\partial_0}{\to}} X_0 \right) \in Cat^{\Delta^{op}}

which satisfies the Segal conditions. Here

X 0=Alg R X_0 = Alg_R

is the category of associative algebras and homomorphisms between them, while

X 1=BMod R X_1 = BMod_R

is the category of def. 1, whose objects are pairs consisting of two algebras AA and BB and an AA-BB bimodule NN between them, and whose morphisms are pairs consisting of two algebra homomorphisms f:AAf \colon A \to A' and g:BBg \colon B \to B' and an intertwiner N(g)(f)NN \cdot (g) \to (f) \cdot N'.

The (,2)(\infty,2)-category of \infty-algebras and \infty-bimodules

We discuss the generalization of the notion of bimodules to homotopy theory, hence the generalization from category theory to (∞,1)-category theory. (Lurie, section 4.3).

Let 𝒞\mathcal{C} be monoidal (∞,1)-category such that

  1. it admits geometric realization of simplicial objects in an (∞,1)-category (hence a left adjoint (∞,1)-functor ||:𝒞 Δ op𝒞{\vert-\vert} \colon \mathcal{C}^{\Delta^{op}} \to \mathcal{C} to the constant simplicial object functor), true notably when 𝒞\mathcal{C} is a presentable (∞,1)-category;

  2. the tensor product :𝒞×𝒞𝒞\otimes \colon \mathcal{C}\times \mathcal{C} \to \mathcal{C} preserves this geometric realization separately in each argument.

Then there is an (∞,2)-category Mod(𝒞)Mod(\mathcal{C}) which given as an (∞,1)-category object internal to (∞,1)Cat has

  • (,1)(\infty,1)-category of objects

    Mod(𝒞) [0]Alg(𝒞) Mod(\mathcal{C})_{[0]} \simeq Alg(\mathcal{C})

    the A-∞ algebras and ∞-algebra homomorphisms in 𝒞\mathcal{C};

  • (,1)(\infty,1)-category of morphisms

    Mod(𝒞) [1]BMod(𝒞) Mod(\mathcal{C})_{[1]} \simeq BMod(\mathcal{C})

    the \infty-bimodules and bimodule homomorphisms (intertwiners) in 𝒞\mathcal{C}

This is (Lurie, def. 4.3.6.10, remark 4.3.6.11).

Morover, the horizontal composition of bimodules in this (∞,2)-category is indeed the relative tensor product

A,B,C=() B(): AMod B× BMod C AMod C. \circ_{A,B,C} = (-) \otimes_B (-) \;\colon\; {}_A Mod_{B} \times {}_{B}Mod_C \to {}_A Mod_C \,.

This is (Lurie, lemma 4.3.6.9 (3)).

Here are some steps in the construction:

Definition (Notation)

For SΔ opS \to \Delta^{op} an (∞,1)-functor (given as a map of simplicial sets from a quasi-category SS to the nerve of the simplex category), write

Tens S Tens ×Δ opS Tens^\otimes_{S} \coloneqq Tens^\otimes \underset{\Delta^{op}}{\times} S

for the fiber product in sSet, where Tens Tens^\otimes is as defined at bilinear map in an (∞,1)-category.

Moreover, for 𝒞 Tens S \mathcal{C}^\otimes \to Tens^\otimes_S a fibration in the model structure for quasi-categories which exhibits 𝒞 \mathcal{C}^\otimes as an SS-family of (∞,1)-operads, write

Alg S(𝒞)Fun Tens S (Step S,𝒞 ) Alg_S(\mathcal{C}) \hookrightarrow Fun_{Tens^\otimes_S}(Step_S, \mathcal{C}^\otimes)

for the full sub-(∞,1)-category on those (∞,1)-functors which send inert morphisms to inert morphisms.

(Lurie, notation 4.3.4.15)

Definition

Define Mod(𝒞)Δ opMod(\mathcal{C}) \to \Delta^{op} as the map of simplicial sets with the universal property that for every other map of simplicial set KΔ opK \to \Delta^{op} there is a canonical bijection

Hom sSet/S(K,Mod(𝒞))Alg Tens K/𝒜𝓈𝓈(𝒞), Hom_{sSet/S}(K, Mod(\mathcal{C})) \simeq Alg_{Tens_K / \mathcal{Ass}}( \mathcal{C} ) \,,

where on the right we use notation as in def. 1 2.

This is (Lurie, cor. 4.3.6.2) specified to the case of (Lurie, lemma 4.3.6.9).

(…)

References

Bimodules in homotopy theory/higher algebra are discussed in section 4.3 of

Specifically the homotopy theory of A-infinity bimodules? is discussed in

  • Volodymyr Lyubashenko, Oleksandr Manzyuk, A-infinity-bimodules and Serre A-infinity-functors (arXiv:math/0701165)

and section 5.4.1 of

  • Boris Tsygan, Noncommutative calculus and operads in Guillermo Cortinas (ed.) Topics in Noncommutative geometry, Clay Mathematics Proceedings volume 16

Revision on February 11, 2013 at 15:19:04 by Urs Schreiber See the history of this page for a list of all contributions to it.